首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The alternative and simultaneous spectrophotometric determination of niobium and tantalum was examined by using the colour development between o-hydroxyhydroquinonephthalein (Qnph) and niobium or tantalum in the presence of hexadecyltrimethylammonium chloride (HTAC) in strong acidic media. Beer's law was obeyed up to 10.0 g of niobium and up to 18.0 g of tantalum in a final volume of 10.0 ml. The apparent molar absorption coefficients for niobium and tantalum were 2.18×105 and 2.09×105 l mol–1 cm–1 with Sandell's sensitivities of 0.00042 g/cm2 niobium at 520 nm and 0.00085 g/cm2 tantalum at 510 nm, respectively. The alternative assay of niobium and tantalum was possible by using two methods: Method A — masking method with oxalic acid, Method B — acid adjusting-method using 50% sulfuric acid. These methods were 2–6-times more sensitive than other methods.Application of xanthene derivatives in analytical chemistry. Part XC. Part LXXXIX see ref [1]  相似文献   

2.
The reversed matrix representation of the Lambert-Beer law (CPA matrix method) is applied in simultaneous spectrophotometric determinations. Restrictions on the selection of analytical wavelengths in applying the CPA matrix method are investigated experimentally and theoretically. Four criteria for selecting suitable wavelengths are described. A spectrophotometric procedure for niobium and tantalum with salicylfluorone and cetyltrimethylammonium bromide in the presence of tartaric acid was developed and used for the simultaneous determination of niobium and tantalum by the CPA matrix method. The absorption maxima were at 520 and 513 nm, respectively. Measurements at six wavelengths in the range 500–530 nm provided data from which niobium (0.04–0.4 μm ml?1) and tantalum (0.08–0.8 μg ml?1) were evaluated, with relative standard deviations of <2.  相似文献   

3.
Micro amounts of tantalum can be determined directly by spectrophotometry with 4,5-dibromo-o-nitrophenylfluorone, citric acid, hydrogen peroxide and Triton X-100 in 0.5–5 mol l?1 sulphuric acid. The apparent molar absorptivity of tantalum at 530 nm is 1.84 × 105 l mol?1 cm?1. Beer's law is obeyed for 0–10 μg of tantalum in 25 ml of solution at 530 nm and a large amount of niobium and most foreign ions can be tolerated. Results obtained by applying the proposed method to niobium oxide, ferroniobium, nickel-base alloy and a mineral are satisfactory. The synthesis of the complexing agent is described.  相似文献   

4.
An attempt to separate niobium and tantalum by cupfcrron was only moderately successful at pH 4.5 to 5.5 in the presence of a magnesia mixture as a coagulating agent. A more satisfactory separation of niobium and tantalum from each other, tried out up to ratios of 30:1 and 1.30, is effected with Sn+2 or Sn+4 as a co-precipitating agent under the conditions described niobium can be separated, in the presence of complexone III, from almost all the ions except U, Be, Ti and PO4-3. Iron and other tervalent elements, when present in 100 fold excess with respect to niobium, require double precipitation The method gives highly satisfactory results when applied to the analysis of niobium in niobium-molybdenum stainless steel.The use of titanium as a co-precipitant is less successful than that of tin  相似文献   

5.
A solvent extraction procedure for the separation of niobium and tantalum has been developed. The method consists of extracting tantalum from its aqueous mixture with niobium, with the help of di(2-ethylhexyl)phosphoric acid (HDEHP) in n-heptane. The aqueous feed consists of niobium and tantalum in an aqueous medium containing hydrochloric and oxalic acids. The concentrations of niobium and tantalum were raised to 1 mg/ml in the aqueous solution. The extraction efficiency of tantalum under these conditions was found to be 85%. Effects of chloride and oxalate ions as well as those of the concentration of HDEHP on the extraction efficiency were studied and discussed in detail.  相似文献   

6.
A fast and highly efficient Kalman Filter analysis-flow injection chemiluminescence (FI-CL) method was developed to simultaneously determine trace amounts of niobium and tantalum in geological samples. The method, without the boring process of separation and dear instruments, is suitable for field scene analysis. The mixed chemiluminescence kinetic curve was analyzed by a Kalman Filter (KF) in this method to realize the simultaneous determination of niobium and tantalum. Possible interference elements in the determination were investigated. Under the selected conditions, the detection limits (3sigma, n = 11) of niobium(V) and tantalum(V) were 2.1 x 10(-3) microg g(-1) and 4.0 x 10(-3) microg g(-1), respectively, and the relative standard deviations were 4.9% and 3.3% (n = 9). The method was applied to the determination of niobium and tantalum in geological samples with satisfactory results.  相似文献   

7.
R. Dams  J. Hoste 《Talanta》1964,11(12):1605-1612
An attempt to separate niobium and tantalum by precipitation from homogeneous solution by thermal decomposition of their peroxy complexes, in the presence of tannin and oxalate, has been only moderately successful. A more satisfactory separation of tantalum and niobium for ratios from 50:1 to 1:30 is obtained by extracting the bisulphate melt with ammonium oxalate before adding hydrogen peroxide, hydrochloric acid and tannin. For a tantalum/niobium ratio of 1:1 the niobium coprecipitation is reduced to 5 %. Furthermore, two alternative possibilities are presented: (1) a quantitative recovery of a tantalum precipitate at small oxalate and high tannin concentration, leaving 90% of the tantalum-free niobium in solution; (2) an 85 % recovery of niobium-free tantalum at high oxalate and small tannin concentration. A study of the coprecipitation process of niobium shows that the distribution coefficients follow a logarithmic pattern, true homogeneous mixed crystals being formed.  相似文献   

8.
Instrumental activation analysis is used for the determination of carbon in the refractory metals zirconium, niobium, tantalum and tungsten, based on the 12C(d, n)13N reaction induced by 5–7-MeV deuterons. 13N(t12 = 10.0 min) is detected via its annihilation radiation. The contribution of 13N to the annihilation activity is separated from that of other β+-emitters by decay-curve analysis. The method is free of nuclear interferences. The possible spectrometric interferences are discussed. Concentrations of 65.1, 24.8, 1.04 and <0.015 μg C g-1, with relative standard deviations of 4.0, 5.9 and 14.0%, were obtained for zirconium, niobium, tantalum and tungsten, respectively.  相似文献   

9.
Savariar CP  Joseph J 《Talanta》1970,17(1):45-50
N-Acetylsalicyloyl-N-phenylhydroxylamme is proposed for the separation of niobium(V) and tantalum(V) and their gravimetric determination. Niobium is precipitated at pH 5.5-6.5 by the reagent and the complex is weighed directly. Tantalum is precipitated from 1-2M hydrochloric acid solutions and the complex is ignited to tantalum pentoxide. The method is fairly selective. In the presence of thiocyanate the reagent forms an extractable complex with niobium. The reaction forms the basis of a selective and sensitive spectrophotometric determination of niobium.  相似文献   

10.
Summary A trace-matrix separation technique for the analysis of high-purity tantalum by ICP-AES has been developed to overcome the difficulties caused by the line-richness of this matrix. The procedure is based on the extraction of tantalum with diantipyrylmethane from 12 mol/l HF in dichloroethane. The extraction behaviour of 35 elements has been investigated from which 25 can quantitatively be separated with a residual matrix concentration <0.01% at 1 g sample portion. The achievable limits of detection for ICP-AES are between 0.02 g/g and 10 g/g. The method was applied to the analysis of a high-purity tantalum sample. For a number of elements, the results of this technique are compared with those of other techniques whereby, in general, a good agreement was achieved.  相似文献   

11.
The behaviour of the oxinates of niobium, tantalum and associated metals in the infra-red region was studied and a method developed for the determination of niobium and tantalum. Vanadium caused no interference, but other heavy metals, such as molybdenum, manganese and cobalt, which interfered were removed by preliminary treatment when the method was applied to the determination of niobium and tantalum in steels.  相似文献   

12.
A method is described for the separation and gravimetric determination of niobium, tantalum and titanium by precipitation with N-benzoyl-N-phenylhydroxylamine. Titanium is kept in solution with EDTA and hydrogen peroxide, and the earth acids are precipitated in 1N sulphuric acid Niobium and tantalum are separated and determined by a modification of the method of MAJUMDAR AND MUKHERJEE. All three metals are finally precipitated with N-benzoyl-N-phenyl-hydroxylamine. In the analysis of complex materials niobium, tantalum and titanium are separated from other constituents by a double precipitation with N-benzoyl-N-phenylhydroxylamine in the presence of EDTA and tartaric acid  相似文献   

13.
流动注射化学发光(Flow injection-chemiluminescence,简称FI-CL)是基于流动注射(FI)进样技术与化学发光(CL)定量分析结合的痕量分析技术,具有仪器简单、操作方便及易于自动化等特点,从而在分析痕量元素方面取得了较大进展,尤其在痕量金属元素快速分析方面更具有优势.  相似文献   

14.
There is need for a method for the determination of niobium in titanium alloys, since niobium-titanium alloys are becoming increasingly important. The determination of niobium in this type of alloy is an extremely difficult matter. Many approaches were tried before the problem was solved. In the method proposed in this paper the sample is dissolved in a mixture of hydrofluoric and nitric acids, the solution evaporated to a small volume, and boric acid added. Two tannic acid separations are then made to separate the niobium from the bulk of the titanium. The niobium, is determined colorimetrically by the thiocyanate method using a water-acetone medium. A study was made of the possible interference of elements that might be present in titanium alloys. It was found that the presence of tantalum causes two opposing tendencies. Tantalum can cause high results for niobium because it forms a complex with thiocyanate which is visually colorless but shows some absorption. Tantalum can cause low results for niobium by hindering the development of the niobium color. The resultant effect of the tantalum depends upon the amount of tantalum present, the amount of niobium present and the ratio of tantalum to niobium. The presence of more than one per cent. tungsten can lead to high results for niobium. Other elements that might be present in titanium alloys do not interfere with the method. The procedure is designed for titanium alloys containing 0.05 to 10 per cent. niobium. The method is reasonably rapid. Six determinations can be finished in two days. The method should be applicable to many other materials besides titanium alloys.  相似文献   

15.
Niobium and tantalum which have close chemical similarities have been separated through two different methods, viz. solvent extraction and reversed phase extraction chromatography (RPEC) in tracer scale using Aliquat 336 as a liquid anion exchanger. Quantitative extraction of tantalum in the organic phase from 0.05M HF solution by 5·10–4M Aliquat 336 solution was achieved leaving niobium in the aqueous phase. In RPEC, hydrophobized kieselguhr impregnated with Aliquat 336 was used as the stationary phase in the column from which niobium was first eluted with 0.1M HF and then tantalum with 10M HNO3 solution. The purity of the separated isotopes in both the procedures were verified by means of gamma-ray spectrometry.  相似文献   

16.
Recent developments in the metallurgy of niobium, tantalum and zirconium have necessitated provision of analytical procedures for determining niobium and tantalum in the presence of each other and in the presence of zirconium. For this purpose, absorptioinetric procedures based on the formation of yellow coloured complexes, between pyrogallol and niobium or tantalum, have been critically examined. Direct absorptiometric procedures are described, which are suitable for determining niobium or tantalum in the range 2 to 7%; when either of these metals exceeds 7%, differential absorptiometric procedures are recommended. Corrections must lie made for absorption due to the presence of other metals which form complexes with pyrogallol. In tlie determination of niobium or tantalum up to 5%, the precision of the method is about ±0.05%. About 12 determinations can be made in a day, by one analyst.  相似文献   

17.
Frank L. Chan 《Talanta》1961,7(3-4):253-263
3:3,:5:7-Pentahydroxyflavanone in fairly concentrated acidic solution (6-9N) does not precipitate tantalum and niobium ; however, on heating or boiling, in the presence of air, this flavanone is transformed into 3:3':4':5:7-pentahydroxyflavone, which precipitates any tantalum and niobium present in the solution. Under the precipitation conditions, racemisation of the flavanone also takes place. The racemised flavanone which is less soluble than the original d-form may accompany the tantalum and niobium precipitates without affecting the quantitative determination of these elements.

The precipitation of the tantalum and niobium complexes can be controlled by regulating the acidity and the duration of boiling, as well as the concentration of the flavanone. Experimental data and procedures are given for the precipitation and determination from homogeneous solution of tantalum and niobium complexes. Zirconium and molybdenum do not interfere with the determination. Titanium must be absent or present only in minute quantity.

Since the generation of the precipitating reagent, flavone, from the flavanone is comparatively slow, the precipitation of tantalum and niobium is uniform throughout the solution. By this technique, adsorption and co-precipitation of potassium and sulphate ions in the solution are shown to be negligible. This is in contrast to the less effective dropwise addition of the flavone reported by earlier investigators, in which adsorption and co-precipitation were pronounced.

In the present study, tantalum and niobium oxides were fused with potassium bisulphate. There is no necessity using hydrofluoric acid to dissolve these oxides and therefore no polyethylene apparatus is required.  相似文献   


18.
The use of N-benzoyl-N-phenylhydroxylamine for the separation of niobium and tantalum, allows a satisfactory estimation of niobium from a tartrate solution at an acidity of 2.0N. The pH range for complete precipitation can be extended to 6.5. For tantalum precipitation, the pH of the solution should be below 1.5 and the acidity may even be above 2.0N. At pH 3.5–6.5, niobium is completely precipitated and tantalum remains in solution; the latter is precipitated by lowering the pH. Niobium and tantalum in ratios of 1:16 to 100:1 can be separated by a single precipitation, in the case of a ratio of 1:100 precipitation must be carried out twice. Titanium, zirconium, vanadate and molybdate interfere with the determination of niobium though other ions have no effect in the presence of complexone III and tartaric acid. The precipitates are granular and easy to filter and wash. The time taken for a complete analysis is much less than that of other methods  相似文献   

19.
Phenylarsonic acid permits satisfactory separation of niobium and tantalum and estimation of tantalum from an oxalate solution containing sulphuric acid up to pH 5.8. For complete precipitation of niobium the pH should exceed 4.8. In mixtures, tantalum is precipitated below pH 3.0 and niobium is then precipitated above pH 5.0. When the oxalate concentration is high, recovery of niobium with cupferron is recommended. When the ratio of Nb2O5, to Ta2O5 exceeds 2:1, reprecipitation of tantalum is necessary. The effect of interfering ions is studied.  相似文献   

20.
A new method for the determination of traces of niobium in tantalum metal has been developed. The niobium is separated from tantalum by solvent extraction with hexone from hydrofluoric acid-hydrochloric acid solution, and from molybdenum and tungsten by solvent extraction with oxine-chloroform solution from ammoniacal citrate solution. The niobium is then determined by the spectrophotometric thiocyanate method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号