首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Electroanalysis》2004,16(16):1336-1342
The construction, performance characteristics, and application of polymeric membrane (PME) and coated graphite (CGE) thiocyanate‐selective electrodes are reported. The electrodes were prepared by incorporating the complex [Cu(L)](NO3)2 (L=4,7‐bis(3‐aminopropyl)‐1‐thia‐4,7‐diazacyclononane) into a plasiticized poly(vinyl chloride) membrane. The influence of membrane composition, pH of test solution, and foreign ions were investigated. The electrodes reveal Nernstian behavior over a wide SCN? ion concentration range (1.0×10?6–1.0×10?1 M for PME and 5.0×10?7–1.0×10?2 M for CGE) and show fast dynamic response times of 15 s and lower. The proposed sensors show high selectivity towards thiocyanate over several common organic and inorganic anions. They were successfully applied to the direct determination of thiocyanate in urine and saliva of smokers and nonsmokers, and as an indicator electrode in titration of Ag+ ions with thiocyanate.  相似文献   

2.
We report here our results on the investigation of the chain dynamics of poly(acrylic acid) in aqueous solution. The concentration of poly(acrylic acid) was approximately 3.8×10~(-4) mol/L, two orders of magnitude higher than that reported in the literature. The p H value of the solution was 3.9, and the hydrogen bonds between the intrinsic and ionized carboxylic acid groups formed dynamic networks, which captured aggregation-induced emission-active molecules(a tetra-quaternary ammonium modified tetraphenylethene derivative) inside the polymer coils and induced fluorescence emission. The hydrogen bonds can be classified as intra- or intermolecular; both can be probed based on the emission change of the tetra-quaternary ammonium modified tetraphenylethene probes. The effects of different external stimuli on the polymer chain dynamics were investigated using different metal cations(including Na~+, Li~+, Zn~(2+), Ni~(2+), Ca~(2+), and Co~(2+)), different cation concentrations(1×10~(-6) to 4×10~(-4) mol/L), different poly(acrylic acid) molecular weights(5, 240, and 450 k Da), and different copolymers. The experimental results indicate that the long poly(acrylic acid) chains(high molecular weight) tend to form dense globular coils and exclude the probe molecules outside, which are robust and unsusceptible to water-soluble metal cations. However, the shorter poly(acrylic acid) chains tend to form intermolecular hydrogen bonds, which are helpful in capturing more probe molecules inside the networks, thus inducing stronger emission. Because of the dual functions of forming hydrogen bonds with carboxylic groups and acting as an acceptor of protons from the carboxylic acid group to form cationic species, copolymerization with acrylate amide [poly(acrylic acid)-co-poly(acrylamide)] can greatly affect the chain dynamics of poly(acrylic acid) segments, which is reflected by the drastically decreased emission intensity from the fluorescent probes.  相似文献   

3.
In this paper, three organic intercalating agents containing cations [hexadecyl trimethyl ammonium bromide (CTAB), poly(acrylamide‐co‐diallyldimethylammonium chloride), and quaternized polyethyleneimine] are used to prepare intercalated montmorillonites (MMT) by ion‐exchange method. Then the modified MMTs are doped with vinylbenzyl chloride and styrene copolymer [poly(vinylbenzyl chloride‐co‐styrene)] for fabricating composite anion‐exchange membranes (AEM). Fourier transform infrared, X‐raydiffraction, thermogravimetric analysis, scanning electron microscopy, and Mastersizer laser particle size analyzer are employed to characterize the structure and morphology of MMTs and AEMs. The successful intercalation of MMTs is approved, and the MMT intercalated by CTAB shows an interlayer distance of 2.31 nm. The properties of the composite membranes including water uptake, mechanical property, and ionic conductivity are investigated. Among all the AEMs, the composite membrane containing MMT sheets with CTAB demonstrates better compositive performances. It presents an ionic conductivity of 2.09 × 10?2 S cm?1 at 80°C and good alkaline solution stability. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

4.
The present study focuses on the proton-conducting polymer electrolytes; poly (N-vinyl pyrrolidone)–ammonium thiocyanate and poly (N-vinyl pyrrolidone)–ammonium acetate prepared by solution casting technique. The XRD analysis indicates the amorphous nature of the polymer electrolytes. The Raman spectra of the C=O vibration of pure polymer PVP at 1,663 cm?1 has been appeared as doublet in the polymer electrolytes. The introduction of this new peak in the salt-doped polymer electrolytes may be due to interaction of the cation with the polymer. The room temperature ionic conductivity σ 303κ has been found to be high, 1.7?×?10?4 S cm?1 for 80 mol% PVP–20 mol% NH4SCN and 1.5?×?10?6 S cm?1 for 75 mol% PVP–25 mol% CH3COONH4. The polymer electrolytes have been tested for their application in Zn–air battery.  相似文献   

5.
Liquid polymer membrane electrodes based on nickel and manganese phthalocyanines were examined for use as anion-selective electrodes. The electrodes were prepared by incorporating the ionophores into plasticized poly(vinyl chloride) membranes, which were directly coated onto the surfaces of graphite electrodes. The resulting electrodes demonstrate near-Nernstian responses over a wide linear range of perchlorate anion (5 × 10−7 to 1 × 10−1 M). The electrodes have a fast response time, submicromolar detection limits (5 × 10−7 M perchlorate), and could be used over a wide pH range of 3.5–10. The influences of lipophilic cationic and anionic additives on the response properties of the electrodes were investigated. The proposed sensors revealed high selectivity for perchlorate over a number of common inorganic and organic anions. The highest selectivity was observed for the electrode based on manganese phthalocyanine in the presence of the lipophilic anionic additive sodium tetrakis[3,5-bis(trifluoromethyl)phenyl]borate. Application of the electrodes to determine perchlorate in tap water and human urine is also reported.   相似文献   

6.

Abstract  

Extraction of Zn(II) from aqueous solution using polymer inclusion membranes based on poly(vinyl chloride) containing the phosphonium-based ionic liquid trihexyl(tetradecyl)phosphonium chloride (Cyphos? IL 101) is described. Zn(II) could efficiently be extracted from 5 M hydrochloric acid solution with membranes containing 30 wt% Cyphos IL 101, whereas back-extraction was successfully achieved with 1 M sulfuric acid. Prepared membranes were evaluated in terms of stability in air as well as in terms of leaching of the ionic liquid from the membranes in aqueous solution.  相似文献   

7.
Sulfonate anion modified acrylic acid ter‐polymers and [2‐(methacryloyloxy)ethyl] trimethyl‐ammonium chloride cation modified acrylic acid polymers have been prepared and were characterized with small angle x‐ray diffraction studies. While the sulfonate anion modified acrylic acid ter‐polymer solutions exhibit strong scattering at an angle corresponding to a scattering vector 0.016 A?1, the cation modified acrylic acid polymers show no scattering at corresponding concentrations. The anion modified acrylic acid ter‐polymers are more compact than the corresponding cation‐modified acrylic acid polymers.  相似文献   

8.
The properties of graphite electrode (Gr) modified with poly(diallyl dimethyl ammonium chloride) (PDDA) for the detection of uric acid (UA) in the presence of dopamine (DA) and high concentration of ascorbic acid (AA) have been investigated by cyclic voltammetry, differential pulse voltammetry and chronoamperometry. The polymer modified graphite electrode was prepared by a very simple method just by immersing the graphite electrode in PDDA solution for 20 minutes. The PDDA/Gr modified electrode displayed excellent electrocatalytic activity towards the oxidation of UA, DA and AA compared to that at the bare graphite electrode. The electrochemical oxidation signals of UA, DA and AA are well resolved into three distinct peaks with peak potential separations of 220 mV, 168 mV and 387 mV between AA‐DA, DA‐UA and AA‐UA respectively in cyclic voltammetry studies and the corresponding peak potential separations are 230 mV, 130 mV and 354 mV respectively in differential pulse voltammetry. The lowest detection limits obtained for UA, DA and AA were 1×10?7 M, 2×10?7 M and 800×10?9 M respectively. The PDDA/Gr electrode efficiently eliminated the interference of DA and a high concentration of AA in the determination of UA with good selectivity, sensitivity and reproducibility. The modified electrode was also successfully applied for simultaneous determination of UA, DA and AA in their ternary mixture.  相似文献   

9.
Highly selective poly(vinyl chloride) (PVC) membrane electrodes based on bis(2-mercaptobenzoxazolato)mercury(II) [Hg(MBO)2] and bis(2-pyridinethiolato)mercury(II) [Hg(PT)2] complexes as new carriers for thiocyanate-selective electrodes are reported. The electrodes were prepared by coating the membrane solution containing PVC, plasticizer, carriers and additives on the surface of graphite electrodes. Influence of the membrane composition, pH and possible interfering anions were investigated on the response properties of the electrodes. Both sensors exhibited Nernstian responses towards thiocyanate over a wide concentration range of 1×10−6 to 0.1 M, with slopes of 60.6±0.8 and 57.5±1.2 mV per decade of thiocyanate concentration for Hg(MBO)2 and Hg(PT)2 carriers, respectively, over a wide pH range of 3-11. The limit of detection for both electrodes was ∼6×10−7 M. The sensors have response times of ≤5 s and can be used for at least 2 months without any considerable divergence in their potential response. The proposed electrodes show fairly good discrimination of thiocyanate over several inorganic and organic anions. The electrodes were successfully applied to direct determination of thiocyanate in saliva and as indicator electrodes in precipitation titrations.  相似文献   

10.
Flow-injection spectrophotometric procedures are described for the determination of chloride and bromide using on-line solid mercury(II) thiocyanate and silver thiocyanate minicolumns, respectively. The linear response ranges for chloride and bromide are 0.28 × 10?4?8.5 × 10?4 M and 0.38 × 10?4?2.4 × 10?4 M, respectively. The sample throughput for both systems is 100 h?1. The lifetime of the minicolumns is 50 and 200 injections, respectively.  相似文献   

11.
《Analytical letters》2012,45(15):2444-2459
Abstract

Polymeric membrane electrodes (PMEs) and coated graphite electrodes (CGEs) containing 1,3,4-trisubstituted-2-azetidinone derivatives as ion carriers are reported here for bismuth(III) ion selectivity. These electrodes exhibited Nernstian response for Bi3+ ions over a wide concentration range (5.0 × 10?7 M to 1.0 × 10?1 M for CGE) with a lower detection limit of 3.98 × 10?7 M (for CGE) and wide pH range (1.3–5.0). Compared to polymeric membrane electrode, the coated graphite electrode has shown better selectivity for Bi3+ ions with respect to common metal ions. Proposed electrodes have been used for the estimation of Bi3+ ions in pharmaceutical and glass samples.  相似文献   

12.
New Mn(III)‐L and Mn(IV)‐L complexes were prepared from the highly lipophilic salophen ligand (L): phenol 2,2′‐[(4,5‐dimethyl‐1,2‐phenylene)bis[(E)‐nitrilomethylidyne]]bis[4,6‐bis(1,1‐dimethylethyl). The prepared complexes were fully characterized and used for the construction of thiocyanate membrane electrodes. Optimized membrane electrodes contained 33.0 mg PVC, 66.0 mg o‐nitrophenyloctylether, 50 or 5 (mole %) tetrakis(trifluoromethyl)phenyl borate and 1 mg Mn(III)‐L (sensor 2) or Mn‐(IV)‐L (sensor 12), respectively. Such electrodes exhibited linear responses toward thiocynate in a concentration range of 10?1–10?5 M and detection limits of 8.3×10?6, 8.9×10?6 M for sensor 2 and 12, respectively. Optimized membrane electrodes exhbited high selectivty toward thiocayante compared to more lipophilic anions. The observed thiocyanate selectivity of the optimized membranes was confirmed by formation constant calculations for Mn(III)‐L and Mn(IV)‐L with SCN?, β=1014.1 and 1012.5, which was measured potentiometrically using the sandwich membrane method. Furthermore, computational study using DFT calculations was performed to at DFT/B3LYP level of theory to confirm the observed selectivity data. The response times were 3 and 0.5 min for low and high concentrations. The lifetimes of the optimized electrodes were ~4–6 weeks. The analytical utility of the optimized membrane electrodes was demonstrated by the analysis of thiocyanate level in different saliva samples.  相似文献   

13.
《Electroanalysis》2003,15(4):287-293
Homooxacalix[3]arene derivatives are effective ionophores for constructing serotonin‐selective membrane electrodes. An electrode based on one of the derivatives, tris(methoxyphenylpropyloxy)hexahomooxacalix[3]arene‐triethyl ether, with potassium tetrakis(p‐chlorophenyl)borate (20 mol% relative to the ionophore) as an ionic additive and bis(2‐ethylhexyl) sebacate as a solvent mediator in a poly(vinyl chloride) membrane matrix, displayed much better selectivity for serotonin than for various organic ammonium ions and inorganic cations. The electrode exhibited a near‐Nernstian response to serotonin in the concentration range of 2×10?4 to 1×10?2 M with a slope of 56.4 mV per concentration decade in physiological saline containing 150 mM NaCl and 10 mM Na2HPO4/NaH2PO4 (pH 7.4). The limit of the detection was 8×10?5 M. The selectivity pattern of this electrode was quite different from that of an electrode using calix[6]arene‐hexaacetic acid hexaethyl ester, a well‐known ionophore for primary organic ammonium ions, which did not induce an enhanced response to serotonin. The developed electrode was used for the active loading of serotonin in liposomes induced by transmembrane pH gradients.  相似文献   

14.
《Electroanalysis》2002,14(24):1691-1698
Three different recently synthesized aza‐thioether crowns containing a 1,10‐phenanthroline sub‐unit (L1–L3) and a corresponding acyclic ligand (L4) were studied to characterize their abilities as silver ion ionophores in PVC‐membrane electrodes. Novel conventional silver‐selective electrodes with internal reference solution (CONISE) and coated graphite‐solid contact electrodes (SCISE) were prepared based on one of the 15‐membered crowns containing two donating S atoms and two phenanthroline‐N atoms (L1). The electrodes reveal a Nernstian behavior over wide Ag+ ion concentration ranges (1.0×10?5?1.0×10?1 M for CONISE and 5.0×10?8?4.0×10?2 M for SCISE) and very low limits of detection (8.0×10?6 M for CONISE and 3.0×10?8 M for SCISE). The potentiometric response is independent from pH of the solution in the pH range 3.0–8.0. The electrodes manifest advantages of low resistance, very fast response and, most importantly, good selectivities relative to a wide variety of other cations. The electrodes can be used for at least 2 months (for CONISE) and 4 months for (SCISE) without any appreciable divergence in potentials. The electrodes were used as an indicator electrode in the potentiometric titration of Ag+ ion and in the determination of silver in photographic emulsions and in radiographic and photographic films.  相似文献   

15.
《Electroanalysis》2004,16(12):1002-1008
Preliminary theoretical studies revealed the selective complexation of bis (2‐mercaptoanil) diacetyl (BMDA) with La3+ over several alkali, alkaline earth and heavy metal ions. Thus, novel PVC‐based membrane (PBM) and coated graphite membrane (CGM) sensors for La(III) based on BMDA were prepared. The electrodes display Nernstian behavior over wide concentration ranges (i.e., 1.0×10?5–1.0×10?1 M for PBM and 1.0×10?6–1.0×10?1 M for CGM). The potential response of sensors was pH independent in the range of 4.0–8.0. The sensors possess satisfactory reproducibility, fast response time (<15 s), and specially excellent discriminating ability for La3+ ions with respect to most of the cations. The membrane sensor was used as an indicator electrode in potentiometric titration of lanthanum ions with EDTA. The coated graphite membrane electrode was applied in determination of fluoride ions in mouth wash preparations.  相似文献   

16.
A highly selective polyvinylchloride (PVC) membrane electrode based on Schiff base complex i.e. [Cobalt (Salpen) (PBu3)] ClO4 · H2O (Salpen = bis(salycilaldehyde)propylene diamine) is reported as new carrier for thiocyanate selective electrode by incorporating the membrane ingredients on the surface of graphite electrodes. The proposed electrode possesses a very wide Nernestian linear range to thiocyanate from 1.0 × 10?6 to 1.0 × 10?1 M with slope of ?59.05 ± 0.91 mV per decade of thiocyanate concentration, very low detection limit (8.0 × 10?7 M) and good thiocyanate selectivity over the wide variety of other anions. Fast and stable response, good reproducibility, long-term stability, applicability over a wide pH range (2.8–9.8) are advantages of the reported electrode. The sensor has a response time of <5 s and can be used for at least 14 weeks without any considerable change in respective potential response. The proposed electrode was used for the determination of thiocyanate in saliva, wastewater and human urine with satisfactory results and good agreement with colorimetric as reference method.  相似文献   

17.
《Electroanalysis》2002,14(23):1621-1628
Copper phthalocyanine was used as ion carrier for preparing polymeric membrane selective sensor for detection of iodide. The electrode was prepared by incorporating the ionophore into plasticized poly(vinyl chloride) (PVC) membrane, coated on the surface of graphite electrode. This novel electrode shows high selectivity for iodide with respect to many common inorganic and organic anions. The effects of membrane composition, pH and the influence of lipophilic cationic and anionic additives and also nature of plasticizer on the response characteristics of the electrode were investigated. A calibration plot with near‐Nernestian slope for iodide was observed over a wide linear range of five decades of concentration (5×10?6?1×10?1 M). The electrode has a fast response time, and micro‐molar detection limit (ca. 1×10?6 M iodide) and could be used over a wide pH range of 3.0–8.0. Application of the electrode to the potentiometric titration of iodide ion with silver nitrate is reported. This sensor is used for determination of the minute amounts of iodide in lake water samples.  相似文献   

18.
A new solvent polymeric membrane (PME) and coated graphite (CGE) electrodes based on 3-amino-2-mercapto-3H-quinazolin-4-one as a suitable carrier for La(III) ion are described. The sensors exhibited a Nernstian response for La(III) ion over a wide concentration range (3.0 × 10?7 to 1.0 × 10?1 M for PME and 1.0 × 10?7 to 1.0 × 10?1 M for CGE) with a slope of 20.1 ± 0.3 (PME) and 23.4 ± 0.4 (CGE) mV decade?1. The lower detection limits by PME and CGE were 2.0 × 10?7 and 7.1 × 10?8 M, respectively. The potentiometric response of the proposed electrodes was independent of the pH of the test solution in the pH range 3.0–9.0 with a fast response time (<10 s). The applications of prepared sensors were demonstrated in the determination of lanthanum ions in spiked water sample and also utilized for indirect determination of fluoride content of two mouth wash preparation samples.  相似文献   

19.
At graphite electrodes coated with poly(xylylviologen), PXV, the reduction of dioxygen to hydrogen peroxide proceeds at potentials somewhat more positive than those where the reduction occurs at uncoated electrodes. Coated electrodes were used as rotating disks to evaluate the kinetics of the reduction. The data indicate that only one to two monolayers of the PXV coatings participate in the catalysis. Electrons can be delivered from the electrode surface to the catalytically active viologen sites rapidly enough for the catalytic current to be limited by the rate of the cross reaction between viologen radical cations and dioxygen. The rate constant for this heterogeneous reaction at the polymer—electrolyte interface was estimated to be ca. 106M?1s?1.  相似文献   

20.
A simple, rapid and accurate method for the spectrophotometric determination of chloride in non-polar media is described. The method is based on the well-known reaction of mercury(II) thiocyanate with chloride to release thiocyanate, which then reacts with iron(III). The optimum concentrations of reagents for the determination of chloride in 2,2,4-trimethylpentane (iso-octane) and cyclohexane are reported. The molar absorptivity of the complex at 505 nm is 5120 ± 200 dm3 mol?1 cm?1 for iso-octane and 5340 ± 340 dm3 mol?1 cm?1 for cyclohexane. Beer's Law is obeyed in the range 2 × 10?7–2 × 10?5 mol dm?3 (0.01–1 mg l?1) chloride.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号