首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
A flow-through electrochemical detector with a carbon fibre electrode was fabricated. A chromatographic method for the determination of vitamin B6 using this detector is described, and the results are compared with those obtained by detection with a thin-layer glassy carbon electrode or spectrophotometry. The detection limit of vitamin B6 is 2.5 ng for pyridoxine, 1 ng for pyridoxal and 1 ng for pyridoxamine. The technique was applied to the determination of vitamin B6 in tablets.  相似文献   

2.
The kinetics and mechanism of interaction between pyridoxal and L-tryptophan, D-tryptophan, and their derivatives are studied. It is found that condensation reactions proceed via three kinetically distinguishable stages: (1) the rapid intraplanar addition of the NH2 groups of the amino acids to pyridoxal with the formation of amino alcohols; (2) the rotational isomerism of amino alcohol fragments with their subsequent dehydration and the formation of a Schiff base with a specific configuration; (3) the abstraction of α-hydrogen in the product of condensation of pyridoxal with L-tryptophan, or the abstraction of СО2 in the product of condensation of pyridoxal with D-tryptophan with the formation of quinoid structures, hydrolysis of which results in the preparation of pyridoxamine and keto acid or pyridoxal and tryptamine, respectively. Schiff bases resistant to further chemical transformations are formed in the reaction with tryptophan methyl ester.  相似文献   

3.
The title compound, [Cu(C9H13N5O2)(CH4O)](NO3)2, consists of square‐planar cationic complex units where the CuII centre is coordinated by an N,N′,O‐tridentate pyridoxal–aminoguanidine Schiff base adduct and a methanol molecule. The tridentate ligand is a zwitterion exhibiting an almost planar conformation. The dihedral angles between the mean planes of the pyridoxal ring and the six‐ and five‐membered chelate rings are all less than 2.0°. The charge on the complex cation is neutralized by two nitrate counter‐ions. Extensive N—H...O and C—H...O hydrogen bonding connects these ionic species and leads to the formation of layers. The pyridoxal hydroxy groups are the only fragments that deviate significantly from the flat layer structure; these groups are involved in O—H...O hydrogen bonding, connecting the layers into a three‐dimensional crystal structure.  相似文献   

4.
The present investigation describes the development of a sensitive, rapid polarographic method for the determination of famotidine in pure form and in certain dosage forms. The proposed method depends upon studying the polarographic activity of Nickel(II)‐famotidine complex in Britton Robinson buffer over the pH range 4–8 and its usefulness in the analysis of famotidine using direct current (DCt), differential pulse (DPP), and alternating current (ACt) polarography. The different experimental parameters affecting the cathodic waves were carefully investigated and optimized. Moreover, to check the validity of the proposed method, the standard addition method was applied by adding famotidine to the previously analyzed tablets. The recovery of the drug was calculated by comparing the concentration obtained from the spiked mixtures with those of the pure drug. The results of analysis of commercial tablets and the recovery study suggested that there is no interference from any excipients, which are present in tablets. Statistical comparison of the results was performed with regard to accuracy and precision using student's t‐test and F‐ratio at 95% confidence level. There is no significant difference between the comparison and proposed method with regard to accuracy and precision.  相似文献   

5.
Vitamins B2 and B6 serve as cofactors in enzymatic reactions involved in tryptophan and homocysteine metabolism. Plasma concentrations of these vitamins and amino acids are related to smoking and inflammation, and correlate with other markers of immune activation. Large‐scale studies of these relations have been hampered by lack of suitable analytical methods. The assay described includes riboflavin, five vitamin B6 forms (pyridoxal 5′‐phosphate, pyridoxal, 4‐pyridoxic acid, pyridoxine and pyridoxamine), tryptophan and six tryptophan metabolites (kynurenine, kynurenic acid, anthranilic acid, 3‐hydroxykynurenine, xanthurenic acid and 3‐hydroxyanthranilic acid), cystathionine, neopterin and cotinine. Trichloroacetic acid containing 13 isotope‐labelled internal standards was added to 60 µL of plasma, the mixture was centrifuged, and the resulting supernatant used for analysis. The analytes were separated within 5 min on a stable‐bond C8 column by a gradient‐type mobile phase containing acetonitrile, heptafluorobutyric acid and high concentration (650 mmol/L) of acetic acid, and detected using electrospray ionization tandem mass spectrometry (ESI‐MS/MS). The mobile phase ensured sufficient separation and high ionization efficiency of all analytes. Recoveries were 75–123% and within‐day and between‐day coefficients of variance (CVs) were 2.5–9.5% and 5.4–16.9%, respectively. Limits of detection ranged from 0.05 to 7 nmol/L. The method enables quantification of endogenous plasma concentrations of 16 analytes related to B‐vitamin status and inflammation, and may prove useful in large‐scale epidemiological studies. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
Kinetics and mechanism of condensation of amino acids and amines of different structure and their derivatives with pyridoxal were studied. It was established that the amino acid with secondary amino group, proline, adds to pyridoxal with the formation of amino alcohol. α-Amino acids in the course of condensation with pyridoxal form amino alcohols which transform to Schiff bases. The latter compounds by elimination of the α-hydrogen atom or CO2 from the amino acid fragment and the subsequent hydrolysis of the quinoid structure form the final products. β- And ɛ-amino acids react with pyridoxal to form Schiff bases which are stable to chemical transformations. The possibility was shown of their conversion to the quinoid structure. It was established that the guanidine structure of the molecule of L-arginine unlike its α-NH2 group did not take part in the condensation with pyridoxal. The quantitative evaluation of the condensation rates of triptamine, Ltriptofane, and its methyl ester in the stage of dehydration of their amino alcohols was carried out.  相似文献   

7.
The synthesis, structural analysis and antibacterial reactivity of two octahedral complexes, namely [Fe(PLSC)2](NO3)2.H2O, 1 (PLSC is pyridoxal semicarbazone), and [Co(PLITSC-2H)(PLITSC-H)].CH3OH, 2 (PLITSC is pyridoxal S-methylisothiosemicarbazone) are reported.  相似文献   

8.
《Analytical letters》2012,45(13):1013-1030
Abstract

A simple and specific procedure was developed for the analysis of furosemide from tablets and injections. The procedure consists of extracting furosemide into aqueous sodium hydroxide, addition of the internal standard, appropriate dilution and injection onto a u Bondapak C18 reversed phase column. The mobile phase consisted of a solvent containing acetonitrile and aqueous sodium acetate and the eluate was monitored by either U.V. absorption or spectrofluorimetry. A standard linear calibration curve was obtained for direct standard solutions containing 75 ng to 500 ng on column. This procedure was successfully used to analyze furosemide tablets (individual assay) and injections.  相似文献   

9.
The synthesis, characteristics and analytical applications of pyridoxal nicotinylhydrazone are described. This compound reacts with magnesium(II) in the presence of ammonia, ethylenediamine or pyridine, to produce a 1:1:1 Mg(II)—pyridoxal nicotinylhydrazone—amine fluorescent complex (λex 395 nm, λem 480 nm). A fluorimetric method is proposed for the determination of magnesium(II) (20–100 ng ml-1 in the solution measured); isobutanol is used to extract the complex, reducing the number of interferences.  相似文献   

10.
UVA‐driven photooxidative stress in human skin may originate from excitation of specific endogenous chromophores acting as photosensitizers. Previously, we have demonstrated that 3‐hydroxypyridine‐derived chromophores including B6‐vitamers (pyridoxine, pyridoxamine and pyridoxal) are endogenous photosensitizers that enhance UVA‐induced photooxidative stress in human skin cells. Here, we report that the B6‐vitamer pyridoxal is a sensitizer of genotoxic stress in human adult primary keratinocytes (HEKa) and reconstructed epidermis. Comparative array analysis indicated that exposure to the combined action of pyridoxal and UVA caused upregulation of heat shock (HSPA6, HSPA1A, HSPA1L, HSPA2), redox (GSTM3, EGR1, MT2A, HMOX1, SOD1) and genotoxic (GADD45A, DDIT3, CDKN1A) stress response gene expression. Together with potentiation of UVA‐induced photooxidative stress and glutathione depletion, induction of HEKa cell death occurred only in response to the combined action of pyridoxal and UVA. In addition to activational phosphorylation indicative of genotoxic stress [p53 (Ser15) and γ‐H2AX (Ser139)], comet analysis indicated the formation of Fpg‐sensitive oxidative DNA lesions, observable only after combined exposure to pyridoxal and UVA. In human reconstructed epidermis, pyridoxal preincubation followed by UVA exposure caused genomic oxidative base damage, procaspase 3 cleavage and TUNEL positivity, consistent with UVA‐driven photooxidative damage that may be relevant to human skin exposed to high concentrations of B6‐vitamers.  相似文献   

11.
α,α‐Disubstituted α‐amino acids are central to biotechnological and biomedical chemical processes for their own sake and as substructures of biologically active molecules for diverse biomedical applications. Structurally, these compounds contain a quaternary stereocenter, which is particularly challenging for stereoselective synthesis. The pyridoxal‐5′‐phosphate (PLP)‐dependent L ‐serine hydroxymethyltransferase from Streptococcus thermophilus (SHMTSth; EC 2.1.2.1) was engineered to achieve the stereoselective synthesis of a broad structural variety of α,α‐dialkyl‐α‐amino acids. This was accomplished by the formation of quaternary stereocenters through aldol addition of the amino acids D ‐Ala and D ‐Ser to a wide acceptor scope catalyzed by the minimalist SHMTSth Y55T variant overcoming the limitation of the native enzyme for Gly. The SHMTSth Y55T variant tolerates aromatic and aliphatic aldehydes as well as hydroxy‐ and nitrogen‐containing aldehydes as acceptors.  相似文献   

12.
《Mendeleev Communications》2021,31(4):504-506
The pyridoxal derivatives of chitosan with various degrees of substitution (DS) were synthesized from low-, moderate- and high-molecular-weight chitosans by their reaction with pyridoxal followed by treatment with NaBH4. The derivative of moderate molecular weight and high DS demonstrated a maximum antibacterial activity against S. aureus and E. coli. The nanoparticles of this derivative obtained by ionic gelation are nontoxic, and they exhibit a high in vitro antibacterial effect, which slightly exceeds that of ampicillin and gentamicin.  相似文献   

13.
《Analytical letters》2012,45(8):601-613
Abstract

A rapid and selective method using high performance liquid chromatography with electrochemical detection is described for the determination of apomorphine in tablets. Tablet mixes were dissolved in a standard volume of mobile phase containing the internal standard, N-n-propylnorapomorphine. Separation was achieved on a μ-phenyl column using methanol-acetonitrile-0.05M KH2PO4 (5:15:80) as mobile phase. The eluted compounds were detected with a sandwich-type electrochemical detector employing a glassy carbon working electrode and operated at 0.5V. Satisfactory accuracy and precision were obtained during analyses of tablets containing apomorphine.  相似文献   

14.
The present paper reports on the study of the dephosphorylation of pyridoxal 5′-phosphate and four derived hydrazones (containing the residues of pyrazine, 2-furan, 2-thiophene, 3-pyridine carboxylic acids) induced by bovine alkaline phosphatase from intestinal mucosa at 298.2 K and pH 10 (0.05 m Tris–HCl buffer). We observed and discussed characteristic changes in the UV–vis and fluorescent spectra of substrates. Michaelis–Menten parameters of the enzymatic dephosphorylation are calculated. The stability of alkaline phosphatase in the presence of hydrazones is confirmed. The dephosphorylation of the Zn(II) complex with pyridoxal 5′-phosphate-derived hydrazone is analyzed.  相似文献   

15.
Glycogen phosphorylases catalyze the degradation of glycogen by phosphate (or arsenate) to glucose 1-phosphate (or glucose + arsenate). All glycogen phosphorylases that have been studied so far contain pyridoxal 5′-phosphate, a vitamin B6-derivative, as cofactor. Removal of the cofactor results in an inactive apoenzyme. However, reduction of the azomethine bond linking pyridoxal phosphate to an ?-aminolysyl side chain of the enzyme with NaBH4 does not inactivate glycogen phosphorylase. If therefore the cofactor should be involved in catalysis in glycogen phosphorylase it must function differently from all other classical pyridoxal phosphate dependent enzymes, for these are inactivated by reduction. 31P-NMR spectroscopy has revealed that the 5′-phosphate group of pyridoxal phosphate is present in catalytically active forms of glycogen phosphorylases as dianion in a hydrophobic environment shielded from aqueous solvent. Covalent and/or allosteric activation of muscle glycogen phosphorylases is accompanied by a transition of the monoprotonated form to the dianionic form of the phosphate group of the cofactor. We now report on such ionization changes in unregulated active potato- and E. coli maltodextrin phosphorylases on binding of glucose and oligosaccharides and following catalytic turnover, i.e. arsenolysis of α-1,4-glycosidic bonds. (Like glycogen phosphorylases, maltodextrin phosphorylases belong to the class of α-glucan phosphorylases.) The results of experiments carried out by our group together with recent findings on the three dimensional structure of crystalline muscle glycogen phosphorylases indicate a participation of the dianionic phosphate group as proton acceptor for the glucosyl transfer to and from the glucosyl acceptor. Although other interpretations are not excluded, at present little doubt remains that in the case of glycogen phosphorylases the dianionic phosphate group of the cofactor functions in catalysis.  相似文献   

16.
The potential energy surfaces for the transamination reaction catalyzed by SSAO were explored for some of the possible reactants considered in a preliminary investigation (Comput Chem 2000, 24 , 311). The proton transfer to methylamine (as a model of the catalytic base belonging to the enzyme active site)—either from the keto or enol form of the reactant Schiff bases with one of the possible cofactors, pyridoxal phosphate, PLP (using as a model the pyridoxal ring protonated at N)—was investigated. The enol form seems to be preferred in the region of the neutral intermediate, because even the keto form undergoes a spontaneous rearrangement to the enol form once the Cα proton is delivered to methylamine, producing methylammonium. When the proton is returned back to the Schiff base (on C1), the adduct is about 1.4 kcal/mol more stable than the reactants, while a canonical electron distribution is obtainable only for the enol form. The proton transfer to methylamine was also studied in the presence of the other possible cofactor (para or ortho) topaquinone, TQ. A steep uphill pathway, similar to the keto‐pyridoxal Schiff base one, is obtained using the Schiff base with pTQ, which requires a rearrangement to the final intermediate. On the contrary, using the oTQ structures with the quinonoid O on the same side of methylamine, the proton abstracted from the Schiff base goes spontaneously onto the other quinonoid oxygen. The effect on the barrier heights produced by the presence of a variety of functional groups in the vicinity of the pyridoxal ring nitrogen was also examined. © 2001 John Wiley & Sons, Inc. Int J Quant Chem, 2001  相似文献   

17.
《Tetrahedron letters》1986,27(2):175-178
A synthesis of pyridoxal is described, which avoids delicate redox reactions at the accomplished pyridoxyl system. This synthesis allows the facile preparation of highly (98%) deuterated pyridoxal 10b and of B6-derived alkaloids.  相似文献   

18.
A simple hydrothermal method has been developed to prepare hexagonal tablet precursors, which are then transformed into porous sodium‐doped Ni2P2O7 hexagonal tablets by a simple calcination method. The obtained samples were evaluated as electrode materials for supercapacitors. Electrochemical measurements show that the electrode based on the porous sodium‐doped Ni2P2O7 hexagonal tablets exhibits a specific capacitance of 557.7 F g?1 at a current density of 1.2 A g?1. Furthermore, the porous sodium‐doped Ni2P2O7 hexagonal tablets were successfully used to construct flexible solid‐state hybrid supercapacitors. The device is highly flexible and achieves a maximum energy density of 23.4 Wh kg?1 and a good cycling stability after 5000 cycles, which confirms that the porous sodium‐doped Ni2P2O7 hexagonal tablets are promising active materials for flexible supercapacitors.  相似文献   

19.
Two mononuclear Cu(II) complexes, [Cu(L1H2)](ClO4)1.25Cl0.75·1.25H2O (1) and [Cu(L2H2)](ClO4)2 (2), of the pyridoxal Schiff base ligands N,N′-dipyridoxylethylenediimine (L1H2) and N,N′-dipyridoxyl-1,3-propanediimine (L2H2) are reported. X-ray crystal structures of both complexes are also reported. In both complexes the pyridoxal nitrogen atoms remain protonated. In the solid state, the tetradentate Schiff base ligand is virtually planar in 1, while in 2 the ligand conformation is like an inverted umbrella. In cyclic voltammetry experiments it is found that in these complexes the Cu(III) and Cu(I) states are more easily accessible than in their salen type analogs. The pyridoxal Schiff base complexes are also found to be resistant to oxidative electro-polymerization, unlike their corresponding salicyl aldehyde Schiff base complexes.  相似文献   

20.
《Analytical letters》2012,45(15):2723-2731
Abstract

Two procedures for separation and determination of vitamin B12 in multivitamin tablets by reversed phase high performance liquid chromatography are proposed. Sample preparation is very simple: tablets are dissolved in distilled water, centrifuged and filtered. The sample solution is directly applied in the sample loop injector and chromatograms are obtained with gradient elution using water-methanol and water-acetonitrile as solvents. The peak of vitamin B12 from samples of B-complex tablets is well separated with the two procedures. For multivitamin tablets, however, only the procedure with water and methanol as solvents was good for separation and quantification of vitamin B12. Both procedures were verified by the standard addition method and also compared to a previously developed method using electrothermal atomic absorption spectrometry for vitamin B12 determination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号