首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A general construction of an sh Lie algebra (L -algebra) from a homological resolution of a Lie algebra is given. It is applied to the space of local functionals equipped with a Poisson bracket, induced by a bracket for local functions along the lines suggested by Gel'fand, Dickey and Dorfman. In this way, higher order maps are constructed which combine to form an sh Lie algebra on the graded differential algebra of horizontal forms. The same construction applies for graded brackets in field theory such as the Batalin-Fradkin-Vilkovisky bracket of the Hamiltonian BRST theory or the Batalin-Vilkovisky antibracket. Received: 5 March 1997 / Accepted: 21 May 1997  相似文献   

2.
Left-invariant symplectic structure on a group G; properties of the corresponding Lie algebra g. A unimodular symplectic Lie algebra has to be solvable (see [1]). Symplectic subgroups and left-invariant Poisson structures on a group. Affine Poisson structures: an affine Poisson structure associated to g and admitting g * as a unique leaf corresponds to a unimodular symplectic Lie algebra and the associate group is right-affine. If G is unimodular and endowed with a left-invariant metric g, harmonic theory for the left-invariant forms. Kählerian group is metabelian and Riemannianly flat. Decomposition of a simply connected Kählerian group. A symplectic group admitting a left-invariant metric with a nonnegative Ricci curvature is unimodular and admits a left-invariant flat Kählerian structure.  相似文献   

3.
Novikov algebras were introduced in connection with the Poisson brackets (of hydrodynamic type) and Hamiltonian operators in the formal variational calculus. The commutator of a Novikov algebra is a Lie algebra, and the radical of a finite-dimensional Novikov algebra is transitive. In this paper, we give a classification of transitive Novikov algebras on four-dimensional nilpotent Lie algebras based on Kim (1986, Journal of Differential Geometry 24, 373–394).  相似文献   

4.
The purpose of the Letter is to show how to use the cohomology of the Nijenhuis-Richardson graded Lie algebra of a vector space to construct formal deformations of each Lie algebra structure of that space. One then shows that the de Rham cohomology of a smooth manifold produces a family of cohomology classes of the graded Lie algebra of the space of smooth functions on the manifold. One uses these classes and the general construction above to provide one-differential formal deformations of the Poisson Lie algebra of the Poisson manifolds and to classify all these deformations in the symplectic case.  相似文献   

5.
Introducing the notion of an admissible graded Lie subalgebra A of the Nijenhui-Richardson algebra A(V) of the vector space V, it is shown that each cohomology class of a subcomplex C A of the Chevalley-Eilenberg complex (C 0 M), extends in a cononical way as a graded cohomology class of weight — 1 of A. Applying this when V is the space N of smooth functions of a smooth manifold M, shows that the de Rham cohomology of M is induced by the graded cohomology of weight — 1 of the Schouten graded Lie algebra of M. This allows us to construct explicitly all 1-differential, nc formal deformations of the Poisson bracket of a symplectic manifold. The construction also applies for an arbitrary Poisson manifold but leads to only part of these deformations when the structure degenerates, as shown by an example.  相似文献   

6.
Let ? be the function algebra on a semisimple orbit, M, in the coadjoint representation of a simple Lie group, g, with the Lie algebra ?. We study one and two parameter quantizations ? h and ? t,h of ? such that the multiplication on the quantized algebra is invariant under action of the Drinfeld–Jimbo quantum group, U h (?). In particular, the algebra ? t,h specializes at h= 0 to a U(?)-invariant ($G$-invariant) quantization, %Ascr; t ,0. We prove that the Poisson bracket corresponding to ? h must be the sum of the so-called r-matrix and an invariant bracket. We classify such brackets for all semisimple orbits, M, and show that they form a dim H 2(M) parameter family, then we construct their quantizations. A two parameter (or double) quantization, $? t,h , corresponds to a pair of compatible Poisson brackets: the first is as described above and the second is the Kirillov-Kostant-Souriau bracket on M. Not all semisimple orbits admit a compatible pair of Poisson brackets. We classify the semisimple orbits for which such pairs exist and construct the corresponding two parameter quantization of these pairs in some of the cases. Received: 15 August 1998 / Accepted: 13 January 1999  相似文献   

7.
The present paper is a first step toward establishing connections between solutions of the classical Yang–Baxter equations and cluster algebras. We describe all Poisson brackets compatible with the natural cluster algebra structure in the open Schubert cell of the Grassmannian G k (n) and show that any such bracket endows G k (n) with a structure of a Poisson homogeneous space with respect to the natural action of SL n equipped with an R-matrix Poisson–Lie structure. The corresponding R-matrices belong to the simplest class in the Belavin–Drinfeld classification. Moreover, every compatible Poisson structure can be obtained this way.  相似文献   

8.
Bialgebra structures compatible with Lie algebrae(2) ⊕u(1) and two-dimensional Weyl algebra are classified. Most of them are noncoboundary. The corresponding Poisson brackets are also calculated. Presented at the 9th Colloquium “Quantum Groups and Integrable Systems”, Prague, 22–24 June 2000.  相似文献   

9.
We give explicit formulas for a *-product on the cotangent bundle T * G of a Lie group G; these formulas involve on the one hand the multiplicative structure of the universal enveloping algebra U(G) of the Lie algebra G of G and on the other hand bidifferential operators analogous to the ones used by Moyal to define a *-product on IR2n.Chargé de recherches au FNRS, on leave of absence from Université libre de Bruxelles.  相似文献   

10.
We consider two different constructions of higher brackets. First, based on a Grassmann-odd, nilpotent Δ operator, we define a non-commutative generalization of the higher Koszul brackets, which are used in a generalized Batalin-Vilkovisky algebra, and we show that they form a homotopy Lie algebra. Secondly, we investigate higher, so-called derived brackets built from symmetrized, nested Lie brackets with a fixed nilpotent Lie algebra element Q. We find the most general Jacobi-like identity that such a hierarchy satisfies. The numerical coefficients in front of each term in these generalized Jacobi identities are related to the Bernoulli numbers. We suggest that the definition of a homotopy Lie algebra should be enlarged to accommodate this important case. Finally, we consider the Courant bracket as an example of a derived bracket. We extend it to the “big bracket” of exterior forms and multi-vectors, and give closed formulas for the higher Courant brackets.  相似文献   

11.
We consider constructing the higher order Hamiltonian structures on the dual of the Lie algebra from the first Hamiltonian structure of the coadjoint orbit method. For this purpose we show that the structure of the Lie algebrag is inherited to the algebra of vector fields ong * through the solution of the Modified Classical Yang-Baxter equation (Classicalr matrix). We study the algebra that generates the compatible Poisson brackets.This work was supported by Grant Aid for Scientific Research, the Ministry of Education.  相似文献   

12.
We derive a generalization of the classical dynamical Yang–Baxter equation (CDYBE) on a self-dual Lie algebra G by replacing the cotangent bundle T*G in a geometric interpretation of this equation by its Poisson–Lie (PL) analogue associated with a factorizable constant r-matrix on G. The resulting PL-CDYBE, with variables in the Lie group G equipped with the Semenov-Tian-Shansky Poisson bracket based on the constant r-matrix, coincides with an equation that appeared in an earlier study of PL symmetries in the WZNW model. In addition to its new group theoretic interpretation, we present a self-contained analysis of those solutions of the PL-CDYBE that were found in the WZNW context and characterize them by means of a uniqueness result under a certain analyticity assumption.  相似文献   

13.
We present an axiomatic formulation of a new class of infinitedimensional Lie algebras-the generalizations ofZ-graded Lie algebras with, generally speaking, an infinite-dimensional Cartan subalgebra and a contiguous set of roots. We call such algebras continuum Lie algebras. The simple Lie algebras of constant growth are encapsulated in our formulation. We pay particular attention to the case when the local algebra is parametrized by a commutative algebra while the Cartan operator (the generalization of the Cartan matrix) is a linear operator. Special examples of these algebras are the Kac-Moody algebras, algebras of Poisson brackets, algebras of vector fields on a manifold, current algebras, and algebras with differential or integro-differential cartan operator. The nonlinear dynamical systems associated with the continuum contragredient Lie algebras are also considered.  相似文献   

14.
15.
Characterization, in differential geometric terms, of the groups which can be interpreted as semidirect products of a Lie group G by the group of translations of the dual space of its Lie algebra. Study of the canonical cotangent group of G corresponding to the coadjoint representation. Applications.  相似文献   

16.
The symplectic vector spaceE of theq andp's of classical mechanics allows a basis free definition of the Poisson bracket in the symmetric algebra overE. Thus the symmetric algebra overE becomes a Lie algebra, which can be compared with the quantum mechanical Weyl algebra with its commutator Lie structure. The universality of the Weyl algebra is used to study the well-known ‘classical’ Moyal realisation of the Weyl algebra in the symmetric algebra. Quantisations are defined as linear mappings of the underlying vector spaces of the two algebras. It is shown that the classical Lie algebra is −2 graded, whereas the quantum Lie algebra is not. This proves that they are not isomorphic, and hence there is no Dirac quantisation.  相似文献   

17.
We study a boundary version of the gauged WZW model with a Poisson–Lie group G as the target. The Poisson–Lie structure of G is used to define the Wess–Zumino term of the action on surfaces with boundary. We clarify the relation of the model to the topological Poisson sigma model with the dual Poisson–Lie group G * as the target and show that the phase space of the theory on a strip is essentially the Heisenberg double of G introduced by Semenov–Tian–Shansky.  相似文献   

18.
A definition of pre-Poisson algebras is proposed, combining structures of pre-Lie and zinbiel algebra on the same vector space. It is shown that a pre-Poisson algebra gives rise to a Poisson algebra by passing to the corresponding Lie and commutative products. Analogs of basic constructions of Poisson algebras (through deformations of commutative algebras, or from filtered algebras whose associated graded algebra is commutative) are shown to hold for pre-Poisson algebras. The Koszul dual of pre-Poisson algebras is described. It is explained how one may associate a pre-Poisson algebra to any Poison algebra equipped with a Baxter operator, and a dual pre-Poisson algebra to any Poisson algebra equipped with an averaging operator. Examples of this construction are given. It is shown that the free zinbiel algebra (the shuffle algebra) on a pre-Lie algebra is a pre-Poisson algebra. A connection between the graded version of this result and the classical Yang–Baxter equation is discussed.  相似文献   

19.
Quantum Lie algebras are generalizations of Lie algebras which have the quantum parameter h built into their structure. They have been defined concretely as certain submodules of the quantized enveloping algebras . On them the quantum Lie product is given by the quantum adjoint action. Here we define for any finite-dimensional simple complex Lie algebra an abstract quantum Lie algebra independent of any concrete realization. Its h-dependent structure constants are given in terms of inverse quantum Clebsch-Gordan coefficients. We then show that all concrete quantum Lie algebras are isomorphic to an abstract quantum Lie algebra . In this way we prove two important properties of quantum Lie algebras: 1) all quantum Lie algebras associated to the same are isomorphic, 2) the quantum Lie product of any is q-antisymmetric. We also describe a construction of which establishes their existence. Received: 23 May 1996 / Accepted: 17 October 1996  相似文献   

20.
A new kind of graded Lie algebra (We call it Z2,2 graded Lie algebra) is introduced as a framework for formulating parasupersymmetric theories. By choosing suitable Bose subspace of the Z2,2 graded Lie algebra and using relevant generalized Jacobi identities, we generate the whole algebraic structure of parastatistics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号