首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
 Transition metal sulfates of Cu(II), Co(II), Ni(II), Cr(III), Mn(II), and Fe(III) supported on ZnO were prepared and characterized by SEM, EDX, and XRD. The kinetics of the heterogeneous decomposition of H2O2 over these supported catalysts was investigated. The reaction rate is correlated with both the amount of supported metal ion and its redox potential. The rate of reaction increases with increasing initial concentration of H2O2, attains a maximum, and decreases thereafter. It also increases with pH and reaches a maximum at high pH values. A reaction mechanism is proposed that implies the formation of a peroxo intermediate at the early stages of the reaction. A second intermediate is assumed to be formed at high [H2O2]o which inhibits the progress of the reaction.  相似文献   

2.
张颖  王欣 《化学学报》2010,68(7):633-640
采用密度泛函理论B3LYP方法计算了一种非血红素四氮杂轮烯配合物[Fe(III)TMTAA]催化H2O2歧化的反应机理. 对二重态、四重态和六重态势能面上各驻点进行了全优化, 发现反应易于沿四重态势能面发生. 整个反应分两阶段进行, 第一阶段通过氧氧均裂形成中间体IM6和第一个水, 第二阶段经两次氢转移形成第二个水. 反应决速步骤为 O—O均裂步骤, 能垒为63.9 kJ•mol-1, 相对于自由H2O2均裂所需能垒226.7 kJ•mol-1有较大的降低. 这表明标题配合物可有效地降低标题反应的能垒, 有可能作为一种潜在的过氧化氢仿酶.  相似文献   

3.
4-Aryl-6-methyl-3,4-dihydropyrimidin-2(1H)-one (DHPM) scaffolds of Biginelli type were oxidized using Co(II)/S2O82− and the reaction afforded 6-unsubstituted pyrimidin-2(1H)-ones through an unprecedented dealkylation process. 4-Alkyl DHPMs under similar conditions afforded yet another unusual product, ethyl tetrahydropyrimidin-2,4(1H,3H)-dione-5-carboxylate.  相似文献   

4.
In this work, the values of the heterogeneous standard rate constant and the transfer coefficient of the electrochemical system Fe(III)/Fe(II) in 1 M H2SO4 at a polycrystalline gold electrode were determined. The response spectrum to an ac potential of such amplitude as to make the behaviour of the electrode process non-linear was analysed. The experimental study was complemented by a theoretical study of the Fe(III)/Fe(II) system using numerical methods. Comparison of the experimental and theoretical data enabled the kinetic parameters of this electrode process to be determined.  相似文献   

5.
Fe2O3/SiO2 nanocomposites based on fumed silica A-300 (SBET = 337 m2/g) with iron oxide deposits at different content were synthesized using Fe(III) acetylacetonate (Fe(acac)3) dissolved in isopropyl alcohol or carbon tetrachloride for impregnation of the nanosilica powder at different amounts of Fe(acac)3 then oxidized in air at 400–900 °C. Samples with Fe(acac)3 adsorbed onto nanosilica and samples with Fe2O3/SiO2 including 6–17 wt% of Fe2O3 were investigated using XRD, XPS, TG/DTA, TPD MS, FTIR, AFM, nitrogen adsorption, Mössbauer spectroscopy, and quantum chemistry methods. The structural characteristics and phase composition of Fe2O3 deposits depend on reaction conditions, solvent type, content of grafted iron oxide, and post-reaction treatments. The iron oxide deposits on A-300 (impregnated by the Fe(acac)3 solution in isopropanol) treated at 500–600 °C include several phases characterized by different nanoparticle size distributions; however, in the case of impregnation of A-300 by the Fe(acac)3 solution in carbon tetrachloride only α-Fe2O3 phase is formed in addition to amorphous Fe2O3. The Fe2O3/SiO2 materials remain loose (similar to the A-300 matrix) at the bulk density of 0.12–0.15 g/cm3 and SBET = 265–310 m2/g.  相似文献   

6.
This work describes a catalytic system consisting of both Na4H3[SiW9Al3(H2O)3O37]·12H2O(SiW9Al3) and water as solvents (a small quantity of organic solvents were used as co-solvent for a few substrates) that can be good for selective oxidation of alcohols to ketones (aldehydes) using 30% H2O2 without any phase-transfer catalyst under mild reaction conditions. The catalyst system allows easy product/catalyst separation. Under the given conditions, the secondary hydroxyl group was highly chemoselectively oxidized to the corresponding ketones in good yields in the presence of primary hydroxyl group within the same molecule, and hydroxides are selectively oxidized even in the presence of alkene. Benzylic alcohols were selectively oxidized to the corresponding benzaldehydes in good yields without over oxidation products in solvent-free conditions. Nitrogen, oxygen, sulfur-based moieties, at least for the cases where these atoms are not susceptible to oxidation, do not interfere with the catalytic alcohol oxidation.  相似文献   

7.
Novel systems for palladium-catalyzed selective oxidation of ethylene to a mixture of ethylene glycol mono- and di-acetates as the major reaction products (90-95% selectivity) with H2O2 in acetic acid solution at ambient pressure and 20 °C were developed. The catalytic reaction is very efficient with up to 90% combined yield of glycol acetates with H2O2 as a limiting reagent and 1 mol% catalyst loading. The catalytic systems developed are comprised of a mixture of Pd(OAc)2, and 6-methyl substituted (2-pyridyl)methanesulfonate and/or di(6-pyridyl)ketone ligands. Compositions of the binary, Pd(OAc)2-dpk, Pd(OAc)2-Me-dpms, and ternary, Pd(OAc)2-dpk-Me-dpms, systems have been studied by means of 1H NMR spectroscopy and ESI mass spectrometry. Kinetics studies were performed as well and plausible reaction mechanism was suggested, which features facially chelating ligand-enabled facile oxidation of PdIIC2H4OAc intermediates with H2O2 to form PdIVC2H4OAc transients.  相似文献   

8.
Degradation of methyl tert-butyl ether (MTBE) with Fe2+/H2O2 was studied by purge-and-trap gas chromatography-mass spectrometry. MTBE was degraded 99% within 120 min under optimum conditions. MTBE was firstly degraded rapidly based on a Fe2+/H2O2 reaction and then relatively slower based on a Fe3+/H2O2 reaction. The dissolved oxygen decreased rapidly in the Fe2+/H2O2 reaction stage, but showed a slow increase in the Fe3+/H2O2 reaction stage. tert-Butyl formate, tert-butyl alcohol, methyl acetate and acetone were identified as primary degradation products by mass spectrometry. A preliminary reaction mechanism involving two different pathways for the degradation of MTBE with Fe2+/H2O2 was proposed. This study suggests that degradation of MTBE can be achieved using the Fe2+/H2O2 process.  相似文献   

9.
Yongjin Zou  Lixian Sun  Fen Xu 《Talanta》2007,72(2):437-442
A Prussian Blue (PB)/polyaniline (PANI)/multi-walled carbon nanotubes (MWNTs) composite film was fabricated by step-by-step electrodeposition on glassy carbon electrode (GCE). The electrode prepared exhibits enhanced electrocatalytic behavior and good stability for detection of H2O2 at an applied potential of 0.0 V. The effects of MWNTs thickness, electrodeposition time of PANI and rotating rate on the current response of the composite modified electrode toward H2O2 were optimized to obtain the maximal sensitivity. A linear range from 8 × 10−9 to 5 × 10−6 M for H2O2 detection has been observed at the PB/PANI/MWNTs modified GCE with a correlation coefficient of 0.997. The detection limit is 5 × 10−9 M on signal-to-noise ratio of 3. To the best of our knowledge, this is the lowest detection limit for H2O2 detection. The electrode also shows high sensitivity (526.43 μA μM−1 cm−2) for H2O2 detection which is more than three orders of magnitude higher than the reported.  相似文献   

10.
《中国化学快报》2022,33(4):2125-2128
The difficulty in Fe(III)/Fe(II) conversion in the Fe(III)/peroxymonosulfate (PMS) process limits its efficiency and application. Herein, l-cysteine (Cys), a green natural organic ligand with reducing capability, was innovatively introduced into Fe(III)/PMS to construct an excellent Cys/Fe(III)/PMS process. The Cys/Fe(III)/PMS process, at room temperature, can degrade a variety of organic contaminants, including dyes, phenolic compounds, and pharmaceuticals. In subsequent experiments with acid orange 7 (AO7), the AO7 degradation efficiency followed pseudo-first-order kinetic which exhibited an initial “fast stage” and a second “slow stage”. The rate constant values ranged depending on the initial Cys, Fe(III), PMS, and AO7 concentrations, reaction temperature, and pH values. In addition, the presence of Cl?, NO3?, and SO42? had negligible impact while HCO3? and humic acid inhibited the degradation of AO7. Furthermore, radical scavenger experiments and methyl phenyl sulfoxide (PMSO) transformation assay indicated that sulfate radical, hydroxyl radical, and ferryl ion (Fe(IV)) were the dominant reactive species involved in the Cys/Fe(III)/PMS process. Finally, based on the results of gas chromatography-mass spectrometry, several AO7 degradation pathways, including N=N cleavage, hydroxylation, and ring opening were proposed. This study provided a new insight to improve the efficiency of Fe(III)/PMS process by accelerating Fe(III)/Fe(II) cycle with Cys.  相似文献   

11.

Abstract  

The behavior of H2O2 adsorbed inside a [4,4] armchair boron phosphide nanotube (BPNT) was studied by using density functional calculations. Geometry optimizations were carried out at the B3LYP/6-31G* level of theory using the Gaussian 03 suite of programs. We present the nature of the H2O2 interactions inside the nanotube. The interaction between the guest species (H2O2) and the nanotube and the dipole moments of the different geometries are discussed. The results show that the binding energies and the dipole moments of the nanotube depend on the orientation and location of the H2O2 inside the tube. Among the parallel orientation (AT) and perpendicular orientations (PTA and PTP), the PTA and PTP geometries of the H2O2 are unstable whereas the AT-state geometries show stabilization of the guest species inside the BPNT. For AT orientations, the value of the dihedral angle of the H2O2 trapped inside the BPNT in the most stable conformation displays a notable change with respect to free H2O2. Also, with change of tube type, more efficient binding could not be achieved, and only the orientation and location of the H2O2 inside the tube play an important role in determining the binding energy. The polarization of the BPNT in the presence of the guest species in the PT state is higher than that of the AT state. Adsorption of H2O2 in the AT state slightly reduces the energy gap of the pristine BPNTs and slightly increases their electrical conductance.  相似文献   

12.
在aug-cc-pVTZ基组下采用CCSD(T)和B3LYP方法,研究了H2O2+Cl反应,并考虑在大气中单个水分子对该反应的影响.结果表明,H2O2+Cl反应只存在一条生成产物为HO2+HCl的通道,其表观活化能为10.21kJ·mol-1.加入一分子水后,H2O2+Cl反应的产物并没有发生改变,但是所得势能面却比裸反应复杂得多,经历了RW1、RW2和RW3三条通道.水分子在通道RW1和RW2中对产物生成能垒的降低起显著的负催化作用,而在通道RW3中则起明显的正催化作用.利用经典过渡态理论(TST)并结合Wigner矫正模型计算了216.7-298.2 K温度范围内标题反应的速率常数.结果显示,298.2 K时通道R1的速率常数为1.60×10-13cm3·molecule-1·s-1,与所测实验值非常接近.此外,尽管通道RW3的速率常数kRW3比对应裸反应的速率常数kR1大了46.6-131倍,但该通道的有效速率常数k'RW3却比kR1小了10-14个数量级,表明在实际大气环境中水分子对H2O2+Cl反应几乎没有影响.  相似文献   

13.
The preparation by hydrothermal reaction and the crystal structure of the iron(III) carboxyethylphosphonate of formula [NH4][Fe2(OH){O3P(CH2)2CO2}2] is reported. The green-yellow compound crystallizes in the monoclinic system, space group Pc(n.7), with the following unit-cell parameters: a=7.193(3) Å, b=9.776(3) Å, c=10.17(4) Å and β=94.3(2)°. It shows a typical layered hybrid organic-inorganic structure featuring an alternation of organic and inorganic layers along the a-axis of the unit cell. The bifunctional ligand [O3P(CH2)2CO2]3− is deprotonated and acts as a linker between adjacent inorganic layers, to form pillars along the a-axis. The inorganic layers are made up of dinuclear Fe(III) units, formed by coordination of the metal ions with the oxygen atoms originating from the [O3P−]2− end of the carboxyethylphosphonate molecules, the oxygen atoms of the [−CO2] end group of a ligand belonging to the adjacent layer and the oxygen atom of the bridged OH group. Each Fe(III) ion is six-coordinated in a very distorted octahedral environment. Within the dimer the Fe-Fe separation is found to be 3.5 Å, and the angle inside the [Fe(1)-O(11)-Fe(2)] dimers is ∼124°. The resulting 3D framework contains micropores delimited by four adjacent dimers in the (bc) planes of the unit cell. These holes develop along the a-direction as tunnel-like pores and [NH4]+ cations are located there. The presence of the μ-hydroxo-bridged [Fe(1)-O(11)-Fe(2)] dimers in the lattice is also responsible for the magnetic behavior of the compound at low temperatures. The compound contains Fe3+ ions in the high-spin state and the two Fe(III) ions are antiferromagnetic coupled. The J/k value of −16.3 K is similar to those found for other μ-hydroxo-bridged Fe(III) dimeric systems having the same geometry.  相似文献   

14.
The kinetics of Mn2O3 digestion in various H2SO4 solutions (0.5-2.0 M) and at various temperatures (ambient to 80 °C) to form solid γ-MnO2 and soluble Mn(II) have been examined using X-ray diffraction. Using a modified first-order Avrami expression to describe digestion kinetics, rate constants in the range 0.02-0.98 h−1 were found for Mn2O3 disappearance, and 0.03-0.42 h−1 for γ-MnO2 formation, with higher H2SO4 concentrations and temperatures leading to faster conversion rates. Also, for a particular set of experimental conditions, the rate of γ-MnO2 formation was always slower than Mn2O3 disappearance. This was interpreted in terms of the solubility and stability of the soluble Mn(III) intermediated formed during the digestion. Activation energies for Mn2O3 dissolution and γ-MnO2 formation were also determined.  相似文献   

15.

Abstract  

The 18-metallacrown-6 metallamacrocycle [Fe6(pmshz)6(C4H9NO)6] has been synthesized by the self-assembly reaction of iron ions with N-substituted salicylhydrazide ligands. Six Fe(III) ions and six deprotonated N-propanoyl-4-methylsalicylhydrazide (H3 pmshz) ligands construct a planar 18-membered ring based on Fe–N–N–Fe linkage. Because of the coordination, the ligand enforces the stereochemistry of the Fe(III) ions as a propeller shape with alternating …ΔΛΔΛ… configurations. There is a strong antiferromagnetic exchange interaction between the paramagnetic iron centers.  相似文献   

16.
Summary. An iron(III) complex with the hexadentate ligand 1,3-propanediamine-N,N′-diacetate-N,N′-di-3-propionate (1,3-pddadp) was prepared, chromatographically isolated as its isomer trans(O5O6)-Cs[Fe(1,3-pddadp)] · 2H2O, and characterized. The trans(O5O6) configuration of the iron(III) compound was found to dominate and this geometry was established by means of IR spectroscopy and Density Functional Theory (DFT). Structural data correlating the octahedral geometry of the [Fe(1,3-pddadp)] unit and an extensive strain analysis are discussed in relation to the information obtained for similar complexes. Antibacterial activities of the free ligand and its corresponding iron(III) complex towards common Gram-negative and Gram-positive bacteria are reported as well.  相似文献   

17.
An iron(III) complex with the hexadentate ligand 1,3-propanediamine-N,N′-diacetate-N,N′-di-3-propionate (1,3-pddadp) was prepared, chromatographically isolated as its isomer trans(O5O6)-Cs[Fe(1,3-pddadp)] · 2H2O, and characterized. The trans(O5O6) configuration of the iron(III) compound was found to dominate and this geometry was established by means of IR spectroscopy and Density Functional Theory (DFT). Structural data correlating the octahedral geometry of the [Fe(1,3-pddadp)] unit and an extensive strain analysis are discussed in relation to the information obtained for similar complexes. Antibacterial activities of the free ligand and its corresponding iron(III) complex towards common Gram-negative and Gram-positive bacteria are reported as well.  相似文献   

18.
A convenient and efficient synthesis of monoterpene epoxides by application of heterogeneous poly(4-vinylpyridine)/methyl rhenium trioxide (PVP/MTO) and polystyrene/methyl rhenium trioxide (PS/MTO) systems is described. Even highly sensitive terpenic epoxides were obtained in excellent yield. Environment friendly, easily available, and low cost H2O2 was used as oxidant. Catalysts were stable systems for at least five recycling experiments.  相似文献   

19.
The adsorption and dissociation of molecular oxygen on spinel CuCr2O4 (100) surface were carried out by first-principles calculations based on density functional theory (DFT). The calculated results indicate that the Cr site is most favorable for atomic oxygen adsorption, with an adsorption energy of 402.8 kJ/mol. For molecular oxygen adsorption, there are three types of favorable interaction modes: O2 forms bonds with the Cu site or O2 binds to two Cr sites or O2 interacts with both Cu and Cr sites simultaneously. The lowest activation energy (Ea = 35.4 kJ/mol) was found through exploring possible reaction pathways for O2 dissociation. The relationship between Ea and reaction enthalpy (ΔH) for O2 dissociation adsorption reactions fits Brønsted-Evans-Polanyi (BEP) behavior.  相似文献   

20.
A H2O2-HBr system and N-bromosuccinimide in an aqueous medium were used as a ‘green’ approach to electrophilic and radical bromination. Several activated and less activated aromatic molecules, phenylsubstituted ketones and styrene were efficiently brominated ‘on water’ using both systems at ambient temperature and without an added metal or acid catalyst, whereas various non-activated toluenes were functionalized at the benzyl position in the presence of visible light as a radical activator. A comparison of reactivity and selectivity of both brominating systems reveals the H2O2-HBr system to be more reactive than NBS for benzyl bromination and for the bromination of ketones, while for electrophilic aromatic substitution of methoxy-substituted tetralone it was higher for NBS. Also, higher yields of brominated aromatics were observed when using H2O2-HBr ‘on water’. Bromination of styrene reveals that not just the structure of the brominating reagent but the reaction conditions: amount of water, organic solvent, stirring rate and interface structure, play a key role in defining the outcome of bromination (dibromination vs bromohydroxylation). In addition, mild reaction conditions, a straightforward isolation procedure, inexpensive reagents and a lower environment impact make aqueous brominating methods a possible alternative to other reported brominating protocols.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号