首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Schubert polynomials were introduced in the context of the geometry of flag varieties. This paper investigates some of the connections not yet understood between several combinatorial structures for the construction of Schubert polynomials; we also present simplifications in some of the existing approaches to this area. We designate certain line diagrams for permutations known as rc-graphs as the main structure. The other structures in the literature we study include: semistandard Young tableaux, Kohnert diagrams, and balanced labelings of the diagram of a permutation. The main tools in our investigation are certain operations on rc-graphs, which correspond to the coplactic operations on tableaux, and thus define a crystal graph structure on rc-graphs; a new definition of these operations is presented. One application of these operations is a straightforward, purely combinatorial proof of a recent formula (due to Buch, Kresch, Tamvakis, and Yong), which expresses Schubert polynomials in terms of products of Schur polynomials. In spite of the fact that it refers to many objects and results related to them, the paper is mostly self-contained.  相似文献   

2.
We give four positive formulae for the (equioriented type A) quiver polynomials of Buch and Fulton [BF99 ]. All four formulae are combinatorial, in the sense that they are expressed in terms of combinatorial objects of certain types: Zelevinsky permutations, lacing diagrams, Young tableaux, and pipe dreams (also known as rc-graphs). Three of our formulae are multiplicity-free and geometric, meaning that their summands have coefficient 1 and correspond bijectively to components of a torus-invariant scheme. The remaining (presently non-geometric) formula is a variant of the conjecture of Buch and Fulton in terms of factor sequences of Young tableaux [BF99 ]; our proof of it proceeds by way of a new characterization of the tableaux counted by quiver constants. All four formulae come naturally in “doubled” versions, two for double quiver polynomials, and the other two for their stable limits, the double quiver functions, where setting half the variables equal to the other half specializes to the ordinary case. Our method begins by identifying quiver polynomials as multidegrees [BB82 , Jos84 , BB85 , Ros89 ] via equivariant Chow groups [EG98 ]. Then we make use of Zelevinsky’s map from quiver loci to open subvarieties of Schubert varieties in partial flag manifolds [Zel85 ]. Interpreted in equivariant cohomology, this lets us write double quiver polynomials as ratios of double Schubert polynomials [LS82 ] associated to Zelevinsky permutations; this is our first formula. In the process, we provide a simple argument that Zelevinsky maps are scheme-theoretic isomorphisms (originally proved in [LM98 ]). Writing double Schubert polynomials in terms of pipe dreams [FK96 ] then provides another geometric formula for double quiver polynomials, via [KM05 ]. The combinatorics of pipe dreams for Zelevinsky permutations implies an expression for limits of double quiver polynomials in terms of products of Stanley symmetric functions [Sta84 ]. A degeneration of quiver loci (orbit closures of GL on quiver representations) to unions of products of matrix Schubert varieties [Ful92 , KM05 ] identifies the summands in our Stanley function formula combinatorially, as lacing diagrams that we construct based on the strands of Abeasis and Del Fra in the representation theory of quivers [AD80 ]. Finally, we apply the combinatorial theory of key polynomials to pass from our lacing diagram formula to a double Schur function formula in terms of peelable tableaux [RS95a , RS98 ], and from there to our formula of Buch–Fulton type.  相似文献   

3.
We study a family of polynomials whose values express degrees of Schubert varieties in the generalized complex flag manifold G/B. The polynomials are given by weighted sums over saturated chains in the Bruhat order. We derive several explicit formulas for these polynomials, and investigate their relations with Schubert polynomials, harmonic polynomials, Demazure characters, and generalized Littlewood-Richardson coefficients. In the second half of the paper, we study the classical flag manifold and discuss related combinatorial objects: flagged Schur polynomials, 312-avoiding permutations, generalized Gelfand-Tsetlin polytopes, the inverse Schubert-Kostka matrix, parking functions, and binary trees. A.P. was supported in part by National Science Foundation grant DMS-0201494 and by Alfred P. Sloan Foundation research fellowship. R.S. was supported in part by National Science Foundation grant DMS-9988459.  相似文献   

4.
Young's lattice, the lattice of all Young diagrams, has the Robinson-Schensted-Knuth correspondence, the correspondence between certain matrices and pairs of semi-standard Young tableaux with the same shape. Fomin introduced generalized Schur operators to generalize the Robinson-Schensted-Knuth correspondence. In this sense, generalized Schur operators are generalizations of semi-standard Young tableaux. We define a generalization of Schur polynomials as expansion coefficients of generalized Schur operators. We show that the commutation relation of generalized Schur operators implies Pieri's formula for generalized Schur polynomials.  相似文献   

5.
In this paper we study Grothendieck polynomials indexed by Grassmannian permutations, which are representatives for the classes corresponding to the structure sheaves of Schubert varieties in the K-theory of Grassmannians. These Grothendieck polynomials are nonhomogeneous symmetric polynomials whose lowest homogeneous component is a Schur polynomial. Our treatment, which is closely related to the theory of Schur functions, gives new information about these polynomials. Our main results are concerned with the transition matrices between Grothendieck polynomials indexed by Grassmannian permutations and Schur polynomials on the one hand and a Pieri formula for these Grothendieck polynomials on the other.  相似文献   

6.
We obtain a tableau definition of the skew Schubert polynomials named by Lascoux, which are defined as flagged double skew Schur functions. These polynomials are in fact Schubert polynomials in two sets of variables indexed by 321-avoiding permutations. From the divided difference definition of the skew Schubert polynomials, we construct a lattice path interpretation based on the Chen–Li–Louck pairing lemma. The lattice path explanation immediately leads to the determinantal definition and the tableau definition of the skew Schubert polynomials. For the case of a single variable set, the skew Schubert polynomials reduce to flagged skew Schur functions as studied by Wachs and by Billey, Jockusch, and Stanley. We also present a lattice path interpretation for the isobaric divided difference operators, and derive an expression of the flagged Schur function in terms of isobaric operators acting on a monomial. Moreover, we find lattice path interpretations for the Giambelli identity and the Lascoux–Pragacz identity for super-Schur functions. For the super-Lascoux–Pragacz identity, the lattice path construction is related to the code of the partition which determines the directions of the lines parallel to the y-axis in the lattice.  相似文献   

7.
Let G be a compact connected Lie group and let H be the centralizer of a one-parameter subgroup in G. Combining the ideas of Bott-Samelson resolutions of Schubert varieties and the enumerative formula on a twisted product of 2 spheres obtained in [Du2], we obtain an explicit formula for multiplying Schubert classes in the flag manifold . Mathematics Subject Classification (2000) 14N15 (14M10) An erratum to this article is available at .  相似文献   

8.
Schur polynomials are a special case of Schubert polynomials. In this paper, we give an algorithm to compute the product of a Schubert polynomial with a Schur polynomial on the basis of Schubert polynomials. This is a special case of the general problem of the multiplication of two Schubert polynomials, where the corresponding algorithm is still missing. The main tools for the given algorithm is a factorization property of a special class of Schubert polynomials and the transition formula for Schubert polynomials.  相似文献   

9.
Grothendieck polynomials, introduced by Lascoux and Schützenberger, are certain K-theory representatives for Schubert varieties. Symplectic Grothendieck polynomials, described more recently by Wyser and Yong, represent the K-theory classes of orbit closures for the complex symplectic group acting on the complete flag variety. We prove a transition formula for symplectic Grothendieck polynomials and study their stable limits. We show that each of the K-theoretic Schur P-functions of Ikeda and Naruse arises from a limiting procedure applied to symplectic Grothendieck polynomials representing certain “Grassmannian” orbit closures.  相似文献   

10.
We study Schur Q-polynomials evaluated on a geometric progression, or equivalently q-enumeration of marked shifted tableaux, seeking explicit formulas that remain regular at q=1. We obtain several such expressions as multiple basic hypergeometric series, and as determinants and pfaffians of continuous q-ultraspherical or continuous q-Jacobi polynomials. As special cases, we obtain simple closed formulas for staircase-type partitions.  相似文献   

11.
Let X, Y be finite sets and T a set of functions XY which we will call “ tableaux”. We define a simplicial complex whose facets, all of the same dimension, correspond to these tableaux. Such tableau complexes have many nice properties, and are frequently homeomorphic to balls, which we prove using vertex decompositions [BP79]. In our motivating example, the facets are labeled by semistandard Young tableaux, and the more general interior faces are labeled by Buch’s set-valued semistandard tableaux. One vertex decomposition of this “Young tableau complex” parallels Lascoux’s transition formula for vexillary double Grothendieck polynomials [La01, La03]. Consequently, we obtain formulae (both old and new) for these polynomials. In particular, we present a common generalization of the formulae of Wachs [Wa85] and Buch [Bu02], each of which implies the classical tableau formula for Schur polynomials.  相似文献   

12.
We formulate a nonrecursive combinatorial rule for the expansion of the stable Grothendieck polynomials of Fomin and Kirillov (Proc Formal Power Series Alg Comb, 1994) in the basis of stable Grothendieck polynomials for partitions. This gives a common generalization, as well as new proofs of the rule of Fomin and Greene (Discret Math 193:565–596, 1998) for the expansion of the stable Schubert polynomials into Schur polynomials, and the K-theoretic Grassmannian Littlewood–Richardson rule of Buch (Acta Math 189(1):37–78, 2002). The proof is based on a generalization of the Robinson–Schensted and Edelman–Greene insertion algorithms. Our results are applied to prove a number of new formulas and properties for K-theoretic quiver polynomials, and the Grothendieck polynomials of Lascoux and Schützenberger (C R Acad Sci Paris Ser I Math 294(13):447–450, 1982). In particular, we provide the first K-theoretic analogue of the factor sequence formula of Buch and Fulton (Invent Math 135(3):665–687, 1999) for the cohomological quiver polynomials.  相似文献   

13.
We prove the Cauchy type identities for the universal double Schubert polynomials recently introduced by W. Fulton. As a corollary, the determinantal formula for some specializations of the universal double Schubert polynomials corresponding to the Grassmannian permutations are obtained. We also introduce and study the universal Schur functions and a multiparameter deformation of Schubert polynomials. Bibliography: 13 titles.  相似文献   

14.
We show the equivalence of the Pieri formula for flag manifolds with certain identities among the structure constants for the Schubert basis of the polynomial ring. This gives new proofs of both the Pieri formula and of these identities. A key step is the association of a symmetric function to a finite poset with labeled Hasse diagram satisfying a symmetry condition. This gives a unified definition of skew Schur functions, Stanley symmetric functions, and skew Schubert functions (defined here). We also use algebraic geometry to show the coefficient of a monomial in a Schubert polynomial counts certain chains in the Bruhat order, obtainng a combinatorial chain construction of Schubert polynomials.

  相似文献   


15.
We introduce a new basis for quasisymmetric functions, which arise from a specialization of nonsymmetric Macdonald polynomials to standard bases, also known as Demazure atoms. Our new basis is called the basis of quasisymmetric Schur functions, since the basis elements refine Schur functions in a natural way. We derive expansions for quasisymmetric Schur functions in terms of monomial and fundamental quasisymmetric functions, which give rise to quasisymmetric refinements of Kostka numbers and standard (reverse) tableaux. From here we derive a Pieri rule for quasisymmetric Schur functions that naturally refines the Pieri rule for Schur functions. After surveying combinatorial formulas for Macdonald polynomials, including an expansion of Macdonald polynomials into fundamental quasisymmetric functions, we show how some of our results can be extended to include the t parameter from Hall-Littlewood theory.  相似文献   

16.
We present formulas for operators which add a row or a column to the partition indexing the power, monomial, forgotten, Schur, homogeneous and elementary symmetric functions. As an application of these operators we show that the operator that adds a column to the Schur unctions can be used to calculate a formula for the number of pairs of standard tableaux the same shape and height less than or equal to a fixed k.  相似文献   

17.
We study an interpolation analogue of the Schur Q-functions, the factorial Schur Q-functions. We obtain an expression of factorial Schur Q-functions in terms of shifted tableaux (combinatorial formula). Bibliography: 13 titles.  相似文献   

18.
We introduce a family of tableaux that simultaneously generalizes the tableaux used to characterize Grothendieck polynomials and k-Schur functions. We prove that the polynomials drawn from these tableaux are the affine Grothendieck polynomials and k-K-Schur functions – Schubert representatives for the K-theory of affine Grassmannians and their dual in the nil Hecke ring. We prove a number of combinatorial properties including Pieri rules.  相似文献   

19.
《代数通讯》2013,41(7):3111-3133
Abstract

Following Contou-Carrère (Contou-Carrère,C. (1983). Géométrie des Groupes Semi-Simples,Résolutions équivariantes et Lieu Singulier de Leurs Variétés de Schubert. Thèse d’état,Université Montpellier II (published partly as,Le Lieu singulier des variétés de Schubert (1988). Adv. Math.,71:186–221)),we consider the Bott-Samelson resolution of a Schubert variety as a variety of galleries in the Tits building associated to the situation. Using Carrell and Peterson's characterization (Carrell,J. B. (1994). The Bruhat graph of a Coxeter group,a conjecture of Deodhar,and rational smoothness of Schubert varieties. Proc. Symp. in Pure Math. 56(Part I):53–61),we prove that rational smoothness of a Schubert variety can be expressed in terms of a subspace of the Zariski tangent space called,the combinatorial tangent space.  相似文献   

20.
The theory of Schur and Schubert polynomials is revisited in this paper from the point of view of generalized Thom polynomials. When we apply a general method to compute Thom polynomials for this case we obtain a new definition for (double versions of) Schur and Schubert polynomials: they will be solutions of interpolation problems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号