首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Multiporphyrin arrays are a complex class of molecules with numerous potential applications in energy transfer, photomedicine, and light harvesting. We have developed a facile/versatile route to a class of triptycene-linked porphyrin arrays via both Suzuki and Sonogashira cross-coupling methods, which makes use of the rigid three-pronged orientation of triptycene to construct trimeric porphyrin arrays linked either in the meso or β-position with various linker groups. In order to understand the properties of these potential antenna systems and probe their potential applications, the coordination behavior of zinc(II) derivatives with mono- and bidentate N-donor ligands was investigated. Depending on ligand concentration, both one- and two-point binding was observed with a bidentate ligand. Also/in addition, different cavity sizes, obtained by the use of different linker groups, resulted in differences in the binding properties of each trimeric system.  相似文献   

2.
Anisotropy of intermolecular and molecule-substrate interactions holds the key to controlling the arrangement of fullerenes into 2D self-assembled monolayers (SAMs). The chemical reactivity of fullerenes allows functionalization of the carbon cages with sulfur-containing groups, thiols and thioethers, which facilitates the reliable adsorption of these molecules on gold substrates. A series of structurally related molecules, eight of which are new fullerene compounds, allows systematic investigation of the structural and functional parameters defining the geometry of fullerene SAMs. Scanning tunnelling microscopy (STM) measurements reveal that the chemical nature of the anchoring group appears to be crucial for the long-range order in fullerenes: the assembly of thiol-functionalized fullerenes is governed by strong molecule-surface interactions, which prohibit formation of ordered molecular arrays, while thioether-functionalized fullerenes, which have a weaker interaction with the surface than the thiols, form a variety of ordered 2D molecular arrays owing to noncovalent intermolecular interactions. A linear row of fullerene molecules is a recurring structural feature of the ordered SAMs, but the relative alignment and the spacing between the fullerene rows is strongly dependent on the size and shape of the spacer group linking the fullerene cage and the anchoring group. Careful control of the chemical functionality on the carbon cages enables positioning of fullerenes into at least four different packing arrangements, none of which have been observed before. Our new strategy for the controlled arrangement of fullerenes on surfaces at the molecular level will advance the development of practical applications for these nanomaterials.  相似文献   

3.
SA Ikbal  S Brahma  SP Rath 《Inorganic chemistry》2012,51(18):9666-9676
A series of supramolecular architectures of magnesium tetranitrooctaethylporphyrins mediated by several bidentate axial ligands have been synthesized in excellent yields and structurally characterized. Six conjugated axial ligand with increasing chain lengths have been utilized in the present investigations in which the Mg···Mg nonbonding distance between successive ions also increases from 0.73 to 2.70 nm in the series. To the best of our knowledge, this is the first report where stable metallo-porphyrin polymers with such long spacers have been synthesized in one pot so easily. Linear one-dimensional (1D) polymeric chains were observed in the X-ray structure of the six-coordinated complexes in which porphyrin units are aligned parallel to each other to have so-called "shish kebab" like architectures to maintain offset-stacked overlap. However, after an optimum Mg···Mg nonbonding distance, these 1D chain do not continue, rather they form five-coordinated porphyrin dimers with "wheel-and-axle" like architectures which are then self-aggregated by π-π interactions in a perpendicular manner to fill space created by large bridging ligands more effectively which consequently results in spherical structures. The structures of the molecules in solution and their surface patterns on highly ordered pyrolytic graphite (HOPG) have also been investigated.  相似文献   

4.
An approach which employs pentameric porphyrin arrays as building blocks toward larger porphyrin arrays is described. Two flexible, and one relatively rigid, Ru-centered porphyrin pentamers (1-3) were synthesized and fully characterized. Their potential as building blocks toward larger porphyrin arrays has been studied via their coordination chemistry using bidentate and tetradentate ligands. DABCO (diazabicyclo[2.2.2]octane) can bind two monomeric porphyrins but was found to be too small to allow the complete formation of a 10-porphyrin array. On the other hand, titration of a larger bridging dipyridyl porphyrin ligand 17 (0.5 equiv) with 1 or 2 and tetrapyridyl ligand 18 (0.25 equiv) with 3 results in the formation of the 11-porphyrin and 21-porphyrin arrays, respectively, with the 21-porphyrin array containing porphyrins in three different metalation states. Changes in the chemical shift of the inner NH protons as well as the ortho- and meso-protons of the pyridyl groups of the porphyrin ligand clearly indicate the formation of large multiple porphyrin complexes. These studies demonstrate that by use of carefully designed building blocks and suitable bridging ligands, porphyrin arrays can be constructed with a dramatic increase in size in relatively few steps. Exploiting the fact that the strength of binding of pyridyl ligands is Ru > Zn > Ni, intra- vs intermolecular competition has been used to investigate aspects of the folding of the array. The photophysical properties of 3 are also described.  相似文献   

5.
Three double-decker complexes of cerium(IV) were synthesized, which commonly have a 5,10,15,20-tetrakis(4-docosyloxyphenyl)porphyrin (C22OPP) moiety as one of the two tetrapyrrole rings. The three complexes-Ce(Pc)(C22OPP), Ce(C22OPP)2, and Ce(BPEPP)(C22OPP)-are distinguished by the other rings, which are Pc (=phthalocyanine), C22OPP, and BPEPP (=5,15-bis[4-(phenylethynyl)phenyl]porphyrin), respectively. The rate of inter-ring rotation of Ce(BPEPP)(C22OPP) was estimated to be approximately 3 s(-1) in solution at room temperature. These complexes assemble into ordered arrays at the interface of 1-phenyloctane and the highly oriented pyrolytic graphite surface, owing to the affinity of the long alkyl chains toward the surface, as revealed by means of scanning tunneling microscopy (STM) with molecular resolution. The shape of the upper ring is reflected in the STM image. Thus, Ce(Pc)(C22OPP), Ce(C22OPP)2, and Ce(BPEPP)(C22OPP) were observed as circular, square, and elliptic features, respectively. Possible molecular arrangements in the array of Ce(BPEPP)(C22OPP) are proposed by comparing STM images and molecular models. In the mixed arrays of Ce(BPEPP)(C22OPP) and H2(C22OPP), the double-decker complexes were distinguished by brighter features. Competitive adsorption experiments showed that the adsorption of Ce(BPEPP)(C22OPP) is less favorable than that of H2(C22OPP) by DeltaG(app) = 2.7 kJ mol(-1). Ce(BPEPP)(C22OPP) molecules appeared elliptic when placed within their own row, while they appeared isotropic when flanked by H2(C22OPP) molecules. Implications of the differences in the observed shapes to the inter-ring rotation are discussed.  相似文献   

6.
Self-organized systems have attracted much at-tention due to their potential applications in nano- technology as a bottom-up?approach for the con-struction of molecule-scale devices and nanostruc-tures[1—4]. Beyond the self-assembly of small molecu-lar building blocks, Schnherr et al. recently suc-ceeded in arranging the rosette supramolecular nanos-tructures in two dimensions on HOPG[5,6]. Moreover, interest has tremendously increased in the su-pramolecular structures via coordination-dr…  相似文献   

7.
Adlayers of cobalt(II) 5,10,15,20-tetrakis(alpha,alpha,alpha,alpha-2-pivalamidophenyl)porphyrin (CoTpivPP) were prepared by immersing either Au(111) or Au(100) substrate in a benzene solution containing CoTpivPP molecules, and they were investigated in 0.1 M HClO4 and 0.1 M H2SO4 by cyclic voltammetry and in situ scanning tunneling microscopy (STM). The adlayer structure and electrochemical properties of CoTpivPP are compared to those of 5,10,15,20-tetraphenyl-21H,23H-porphine cobalt(II) (CoTPP). Characteristic nanobelt arrays consisting of CoTpivPP molecules were produced on both Au(111) and Au(100) surfaces. The stability of the nanobelt arrays was controlled by manipulating the electrode potential. On the other hand, the formation of nanobelt arrays consisting of O2-adducted CoTpivPP molecules depended upon the crystallographic orientation of Au. The state of O2 trapped in the cavity of CoTpivPP was distinctly observed in STM images as a bright spot in the nanobelt array formed on reconstructed Au(100)-(hex) surface, but not on Au(111) surface. This result suggests that the arrangement of underlying Au atoms plays an important role in the formation of nanobelt arrays with the sixth ligand coordination.  相似文献   

8.
During the past few years,regulation and controlling of the two-dimension(2D)self-assembled supramolecular structure on surface have drawn increasing attention in nanoscience and technology. External stimuli have been widely used to regulate these 2D nanostructures.Among various external stimuli approaches,photo-regulation as one of the most outstanding means of regulation has been extensively studied because different wave bands can lead to molecular conformation variation and new bonds to gain new molecules.In this review,the photo-regulated self-assembled structure on solid surface as well as the photo-reactions of different molecules substituted with photo-sensitive groups are introduced to give us an insight into on-surface photochemistry,which plays an important role on the nano-devices fabrication.Notably,these photo-sensitive behaviors as well as the formed structures on surface were probed at sub-molecule level by unique scanning tunneling microscopy(STM)technique.  相似文献   

9.
10.
We study the interaction and metalation reaction of a free base 5,10,15,20-terakis(4-cyanophenyl)porphyrin (2HTCNPP) with post-deposited Zn atoms and the targeted reaction product Zn-5,10,15,20-terakis(4-cyanophenyl)porphyrin (ZnTCNPP) on a Ag(111) surface. The investigations are performed with scanning tunneling microscopy at room temperature after Zn deposition and subsequent heating. The goal is to obtain further insights in the metalation reaction and the influence of the cyanogroups on this reaction. The interaction of 2HTCNPP with post-deposited Zn leads to the formation of three different 2D ordered island types that coexist on the surface. All contain a new species with a bright appearance, which increases with the amount of post-deposited Zn. We attribute this to metastable SAT (“sitting atop”) complexes formed by Zn and the macrocycle, that is, an intermediate in the metalation reaction to ZnTCNPP, which occurs upon heating to 500 K. Interestingly, the activation barrier for the successive reaction of the SAT complex to the metalated ZnTCNPP species can also be overcome by a voltage pulse applied to the STM tip.  相似文献   

11.
A hexagonal-shaped hybrid metal-porphyrin framework containing 5,15-di(4-pyridyl)-10,20-diphenylporphyrin (trans-H2DPyP) and Zn(NO3)26H2O in DMF has been self-assembled solvothermally. The solvothermal reaction of Zn(II) with conformationally versatile 5,15-di(4-pyridyl)-10,20-diphenylporphyrin, which can coordinate axially to two ligands, resulted in metalation of the porphyrin core and then self-coordination of the metalated porphyrin-produced single crystals of 3-D polymeric arrays. The trans-ZnDPyP framework is thermally stable at 450?°C and allows solvent exchange without losing the crystal structure.  相似文献   

12.
In situ scanning tunneling microscopy (STM) and cyclic voltammetry were employed to investigate the adsorption structures of three semi-crown ligands on an Au(111) surface under the potential control. It is found that all the molecules formed ordered arrays in 0.1 mol/L HClO4 solution, although their geometric structures are complex and asymmetric. The driving force was supposed to come from the balance between intermolecular and molecule-substrate interactions. High resolution STM images revealed internal molecular structures, orientations and packing arrangements in the ordered adlayers. The results are useful for preparing ordered arrays of transition metal-mediated nanostructures.  相似文献   

13.
Starting from 1,3-phenylene linked diporphyrin zinc(II) complex 2ZA, repeated stepwise Ag I-promoted coupling reactions provided linear oligomers from 2nZA up to 128ZA. Of these zigzag shaped porphyrin arrays, the Ag I-promoted intramolecular cyclization reaction of 2 nZA (n=5, 6, 8, 9, 12, and 16) under dilute conditions gave the corresponding cyclic porphyrin wheels C2nZA (n=5, 6, 8, 9, 12, and 16), whereas large arrays 2nZA (n=24, 32, and 48) did not provide cyclic porphyrin products. These large discrete porphyrin arrays and wheels were fully characterized by means of 1H NMR spectroscopy, MALDI-TOF mass spectrometry, UV/Vis absorption spectroscopy, GPC-HPLC analysis, and the scanning tunneling microscopy (STM) technique. The STM images of C12ZA and C18ZA reveal their large circular structures. In the cyclic structures of C2nZA in solution, however, the gradual decrease in fluorescence quantum yields and fluorescence lifetimes are observed, reflecting some conformational heterogeneities. Collectively, the present work provides an important contribution to the construction of fully covalently linked large cyclic arranged porphyrin arrays with ample electronic interactions as a model of light-harvesting antenna.  相似文献   

14.
We have prepared supramolecular assemblies of hexaaryl-anchored polyester zinc(II) porphyrin dendrimers (6P(Zn)W, 12P(Zn)W, and 24P(Zn)W) with various bipyridyl guests (C(n)Py2; n = 1, 2, 4, 6, and 8) through self-assembled coordination to control the structures and photophysical properties. We comparatively investigated the photophysical properties of porphyrin dendrimers with and without guest binding by using ensemble and single-molecule spectroscopy. The spectrophotometric titration data of dendrimers with guest molecules provide a strong indication of the selective intercalation of bipyridyl guests into porphyrin dendrimers. The representative dendrimer assembly 12P(Zn)W [symbol: see text] C6Py2 exhibits increased fluorescence quantum yield and lifetime in ensemble measurements, as well as higher initial photon count rates with stepwise photobleaching behavior in the single-molecule fluorescence intensity trajectories (FITs) compared to 12P(Zn)W. At the single-molecule level, the higher photostability of 12P(Zn)W [symbol: see text] C6Py2 can be deduced from the long durations of the first emissive levels in the FITs. We attribute the change in photophysical properties of the dendrimer assemblies to their structural changes upon intercalation of guest molecules between porphyrin units. These results provide new insight into the control of porphyrin dendritic structures using appropriate bidentate guests in poor environmental conditions.  相似文献   

15.
The synthesis and self‐assembly behavior of porphyrin–polypyridyl ruthenium(II) hybrid, which consists of a flexible alkyl chain attached with two conjugated moieties is described. The electronic absorption spectrum and emission spectra show that the [C8‐TPP‐(ip)Ru(phen)2](ClO4)2, abbreviated as (C8ip)TPPC has optical properties. Scanning tunneling microscopy (STM) studies found that the π–π interaction and metal–ligand interaction allow (C8ip)TPPC to form self‐assembled structure and have an edge‐on orientation on the highly oriented pyrolytic graphite (HOPG) surface. The multidentate structure in (C8ip)TPPC molecules act as linkers between the molecules and form metal–ligand coordination, which forces the assembly process in the direction of stable columnar arrays. In addition, although the sample was stored for two months in ambient conditions, STM experiments showed that the order of (C8ip)TPPC self‐assembly only slightly decreased which indicates that the self‐assembled monolayer is stable. This work demonstrates that introducing a metal‐ligand in the porphyrin‐polypyridyl compound is a useful strategy to obtain novel surface assemblies.  相似文献   

16.
We report a bottom-up approach for the fabrication of metallo-porphyrin compounds and nanoarchitectures in two dimensions. Scanning tunneling microscopy and tunneling spectroscopy observations elucidate the interaction of highly regular porphyrin layers self-assembled on a Ag(111) surface with iron monomers supplied by an atomic beam. The Fe is shown to be incorporated selectively in the porphyrin macrocycle whereby the template structure is strictly preserved. The immobilization of the molecular reactants allows the identification of single metalation events in a novel reaction scheme. Because the template layers provide extended arrays of reaction sites, superlattices of coordinatively unsaturated and magnetically active metal centers are obtained. This approach offers novel pathways to realize metallo-porphyrin compounds, low-dimensional metal-organic architectures and patterned surfaces which cannot be achieved by conventional means.  相似文献   

17.
STM实验发现长链烷烃分子能够改善多种有机分子的吸附性能,本文利用CVFF力场对长链烷烃与石墨吸附体系进行了分子力学模拟,用半经验ZINDO/1,AM1方法对烷基取代酞菁和卟啉的STM形貌反差机制进行了研究。理论计算表明,长链烷烃分子与基底的吸附作用增强了分子的吸附稳定性,而烷烃分子间的二维结晶作用使取代酞菁和卟啉分子形成密排的二维有序结构。前线轨道电子密度和STM实验结果比较证明,分子核部分的电子性质和烷基部分的几何结构决定了取代酞菁和卟啉分子的STM形貌反差。  相似文献   

18.
Engineering silicon oxide surfaces using self-assembled monolayers   总被引:2,自引:0,他引:2  
Although a molecular monolayer is only a few nanometers thick it can completely change the properties of a surface. Molecular monolayers can be readily prepared using the Langmuir-Blodgett methodology or by chemisorption on metal and oxide surfaces. This Review focuses on the use of chemisorbed self-assembled monolayers (SAMs) as a platform for the functionalization of silicon oxide surfaces. The controlled organization of molecules and molecular assemblies on silicon oxide will have a prominent place in "bottom-up" nanofabrication, which could revolutionize fields such as nanoelectronics and biotechnology in the near future. In recent years, self-assembled monolayers on silicon oxide have reached a high level of sophistication and have been combined with various lithographic patterning methods to develop new nanofabrication protocols and biological arrays. Nanoscale control over surface properties is of paramount importance to advance from 2D patterning to 3D fabrication.  相似文献   

19.
Selective metal-ligand interactions have been used to prepare supramolecular bidentate ligands by mixing monodentate ligands with a suitable template. For these assemblies pyridine phosphorus ligands and a zinc(II) porphyrin dimer were used. In the rhodium-catalysed hydroformylation of 1-octene and styrene improved selectivities have been obtained for some of the assembled bidentate ligand systems. In the palladium catalysed asymmetric allylic alkylation similar effects were observed; the enantioselectivity increased by using a bisporphyrin template. The preparation of supramolecular catalyst systems was also explored using tin-oxygen interactions. Dihydroxotin(IV) porphyrin and carboxylic phosphorus ligands assemble into supramolecular ligands and the phosphorus donor atom coordinates to transition metals. The stronger oxygen-tin bond, compared to pyridine-zinc does not result in a better performance of the catalyst.  相似文献   

20.
Recently, covalently linked or self-assembled porphyrin array systems have attracted much attention for their enhanced two-photon absorption (TPA) behaviors. In this study, we have investigated the TPA properties of various dihedral angle controlled, directly linked porphyrin dimers and arrays to elucidate the relationship between the pi-conjugation pathway and TPA properties. We have demonstrated a strong correlation between pi-conjugation (aromaticity) and TPA properties in porphyrin assemblies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号