首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Fe3O4 nanorods and Fe2O3 nanowires have been synthesized through a simple thermal oxide reaction of Fe with C2H2O4 solution at 200–600°C for 1 h in the air. The morphology and structure of Fe3O4 nanorods and Fe2O3 nanowires were detected with powder X-ray diffraction, scanning electron microscopy and transmission electron microscopy. The influence of temperature on the morphology development was experimentally investigated. The results show that the polycrystals Fe3O4 nanorods with cubic structure and the average diameter of 0.5–0.8 μm grow after reaction at 200–500°C for 1 h in the air. When the temperature was 600°C, the samples completely became Fe2O3 nanowires with hexagonal structure. It was found that C2H2O4 molecules had a significant effect on the formation of Fe3O4 nanorods. A possible mechanism was also proposed to account for the growth of these Fe3O4 nanorods. Supported by the Fund of Weinan Teacher’s University (Grant No. 08YKZ008), the National Natural Science Foundation of China (Grant No. 20573072) and the Doctoral Fund of Ministry of Education of China (Grant No. 20060718010)  相似文献   

3.
Emanation thermal analysis, differential thermal analysis, thermogravimetry, X-ray diffraction, scanning electron microscopy (SEM) and surface area and porosity determination from nitrogen adsorption/desorption measurements were used to characterize the Mg-Al-CO3 LDH compound with the Mg:Al ratio 3:1 prepared by re-hydration of the Mg-Al mixed oxide. The mixed oxide was obtained after heating of the intial Mg-Al-CO3 LDH compound in air at 500°C for 2 h. The samples were re-hydrated by two ways namely in a distilled water at 20°C for 5 days or by moistening at 60°C in air with RH 80% during 10 days, respectively. The characteristics of the re-hydrated LDH samples were compared with the initial Mg-Al-CO3 compound. The influence of the re-hydration conditions on the microstructure, surface morphology and thermal stability of the regenerated Mg-Al-CO3 LDHs samples is discussed. It was demonstrated that the re-generation of the layered structure by the hydration of the mixed oxide in water or in air, respectively, took place via the dissolution-crystallization mechanism and that the layered double hydroxide with different surface area and thermal behavior were formed after re-hydration in water or humid air, respectively. The emanation thermal analysis revealed differences in the microstructure changes of the re-hydrated sample during heating. XRD patterns and results of the methods used supported the ETA results.  相似文献   

4.
Yttrium orthoborate crystallizes in the vaterite-type structure and has two polymorphous forms, viz. a low- und a high temperature one. DTA measurements of YBO3 confirmed a reversible phase transition with a large thermal hysteresis. The phase transition has been accurately characterized by the application of different heating and cooling rates (β). Consequently, the extrapolation of the experimental data to zero β yields the transition points at 986.9°C for the heating up and at 596.5°C for the cooling down cycle. These values correspond to samples just after treatment at 1350°C. For samples with a different ‘thermal history’ other phase transition temperatures are observed, (e.g. after having performed several heating and cooling cycles). The linear relationship between the associated DTA signal ΔT=T onsetT offset and the square root of the heating rate β was confirmed, but the relation between T onset and square root of β is not found here. From the empirical data a good linear fitting between T onset and ln(β+1) can be derived. From the kinetic analysis (Kissinger method) of the phase transformation of YBO3 an apparent activation energy of about 1386 kJ mol–1 for heating and of about 568 kJ mol–1 for cooling can be determined  相似文献   

5.
We have studied LiFePO4/C nanocomposites prepared by sol-gel method using lauric acid as a surfactant and calcined at different temperatures between 600 and 900 °C. In addition to the major LiFePO4 phase, all the samples show a varying amount of in situ Fe2P impurity phase characterized by x-ray diffraction, magnetic measurements, and Mössbauer spectroscopy. The amount of Fe2P impurity phase increases with increasing calcination temperature. Of all the samples studied, the LiFePO4/C sample calcined at 700 °C which contains ~15 wt% Fe2P shows the least charge transfer resistance and a better electrochemical performance with a discharge capacity of 136 mA h g?1 at a rate of 1 C, 121 mA h g?1 at 10 C (~70 % of the theoretical capacity of LiFePO4), and excellent cycleability. Although further increase in the amount of Fe2P reduces the overall capacity, frequency-dependent Warburg impedance analyses show that all samples calcined at temperatures ≥700 °C have an order of magnitude higher Li+ diffusion coefficient (~1.3?×?10?13 cm2 s?1) compared to the one calcined at 600 °C, as well as the values reported in literature. This work suggests that controlling the reduction environment and the temperature during the synthesis process can be used to optimize the amount of conducting Fe2P for obtaining the best capacity for the high power batteries.  相似文献   

6.
7.
The compound [Ni(NH3)6][VO(O2)2(NH3)]2 was prepared and characterized by elemental analysis and vibrational spectra. The single crystal X-ray study revealed that the structure consists of [Ni(NH3)6]2+ and [VO(O2)2(NH3)] ions. As a result of weak interionic interactions V′···Op (Op-peroxo oxygen), ([VO(O2)2(NH3)])2 dimers are formed in the solid-state. The thermal decomposition of [Ni(NH3)6][VO(O2)2(NH3)]2 is a multi-step process with overlapped individual steps; no defined intermediates were obtained. The final solid products of thermal decomposition up to 600°C were Ni2V2O7 and V2O5.  相似文献   

8.
This article presents the results of our investigation on the obtaining of Ni0.65Zn0.35Fe2O4 ferrite nanoparticles embedded in a SiO2 matrix using a modified sol–gel synthesis method, starting from tetraethylorthosilicate (TEOS), metal (FeIII,NiII,ZnII) nitrates and ethylene glycol (EG). This method consists in the formation of carboxylate type complexes, inside the silica matrix, used as forerunners for the ferrite/silica nanocomposites. We prepared gels with different compositions, in order to obtain, through a suitable thermal treatment, the nanocomposites (Ni0.65Zn0.35Fe2O4)x–(SiO2)100–x (where x=10, 20, 30, 40, 50, 60 mass%). The synthesized gels were studied by differential thermal analysis (DTA), thermogravimetry (TG) and FTIR spectroscopy. The formation of Ni–Zn ferrite in the silica matrix and the behavior in an external magnetic field were studied by X-ray diffraction (XRD) and quasi-static magnetic measurements (50 Hz).  相似文献   

9.
A nanoceramic product of the composition Lu2Ti2O7 is synthesized by a coprecipitation method with a subsequent sublimation drying and an annealing at 650–1650°C. The conduction of Lu2Ti2O7 synthesized at 1650°C is ionic (10–3 S cm–1 at 800°C). Thus, a new material with a high ionic conduction has been discovered. The ordering in Lu2Ti2O7 is studied by methods of RFA, RSA, IK spectroscopy, electron microscopy, and impedance spectroscopy. The existence of a low-temperature phase transition fluorite-pyrochlore at 800°C and a high-temperature conversion order-disorder at 1650°C are established.Translated from Elektrokhimiya, Vol. 41, No. 3, 2005, pp. 298–303.Original Russian Text Copyright © 2005 by Shlyakhtina, Ukshe, Shcherbakova.  相似文献   

10.
Nonstoichiometric tellurides FexTi1–x Te1.45 synthesized at 850°C were studied by X-ray phase and X-ray fluorescence analysis and by 57Fe Mössbauer spectroscopy. The mutual iron-titanium substitution is limited in this series. The system contains four individual phases in which iron is in three different states: Fe2+ in an asymmetric environment, Fe2+ in a symmetric environment, and Fe0. The distribution of various iron states in the system depends not only on the Fe : Ti ratio, but also on the structure of phases.Translated from Zhurnal Obshchei Khimii, Vol. 74, No. 11, 2004, pp. 1761–1764.Original Russian Text Copyright © 2004 by Pankratova, Zabolotnaya, Panchuk, Semenov, Zvinchuk, Suvorov.This revised version was published online in April 2005 with a corrected cover date.  相似文献   

11.
The effect of calcination temperature on the state of the active component of iron-containing catalysts prepared by the impregnation of silica gel with a solution of FeSO4 and on their catalytic properties in selective H2S oxidation to sulfur was studied. With the use of thermal analysis, XPS, and Mössbauer spectroscopy, it was found that an X-ray amorphous iron-containing compound of complex composition was formed on the catalyst surface after thermal treatment in the temperature range of 400–500°C. This compound contained Fe3+ cations in three nonequivalent positions characteristic of various oxy and hydroxy sulfates and oxide and sulfate groups as anions. Calcination at 600°C led to the almost complete removal of sulfate groups; as a result, the formation of an oxide structure came into play, and it was completed by the production of finely dispersed iron oxide in the ?-Fe2O3 modification (the average particle size of 3.2 nm) after treatment at 900°C. As the calcination temperature was increased from 500 to 700°C, an increase in the catalyst activity in hydrogen sulfide selective oxidation was observed because of a change in the state of the active component. A comparative study of the samples by temperature-programmed sulfidation made it possible to establish that an increase in the calcination temperature leads to an increase in the stability of the iron-containing catalysts to the action of a reaction atmosphere.  相似文献   

12.
The structure of solid high-conductance potassium electrolytes K1 − x Al1 − x TixO2 (x = 0.1; 0.2) at 25 and 575°C is studied by a powder neutron diffraction analysis with the application of full-profile Rietveld analysis. Inserting titanium ions removes in potassium aluminate the phase transition at 540°C and the conductance anisotropy typical for its low-temperature form. Both structures are identical (fcc lattice, space group Fd3m). Experiment and calculation coincide best under the assumption that the potassium sublattice is disordered. The conductance increase upon inserting ions Ti4+ is due, apart from stabilization of the fcc structure, to formation of additional potassium vacancies and larger channels for the migration of potassium cations (ions Ti4+ are larger than ions Al3+).__________Translated from Elektrokhimiya, Vol. 41, No. 7, 2005, pp. 878–883.Original Russian Text Copyright © 2005 by Burmakin, Voronin, Akhtyamova, Berger, Shekhtman.  相似文献   

13.
14.
Summary Heat effects and densities of bovine albumin solutions in Na-acetate buffer pH 4.2 at various NaCl, Li2SO4 and (NH4)2SO4 concentrations were determined by a LKB 10700-2 microcalorimeter and an Anton Paar 60/602 densimeter (25°C). The density measurements were made after 1 and 48 h of the dissolution of bovine albumin in the buffer. The correlations between the changes of the enthalpy of salting and apparent molar volumes vs. concentrations of salts were determined.  相似文献   

15.
Monodisperse and porous nonstoichiometric Zn ferrite can be prepared by a solvothermal method. Such non-Zn ferrite was used to be the precursor for synthesis of ZnFe2O4/Fe2O3 composite via calcination at 600°C for 3 h in air. X-ray powder diffractometer (XRD) and Energy Dispersive Spectrometer (EDS) proved the nonstoichiometry of Zn ferrite synthesized by solvothermal method and the formation of ZnFe2O4/Fe2O3 composite via calcination. TEM image showed that non-Zn ferrite spheres with wormlike nanopore structure were made of primary nanocrystals. BET surface area of non-Zn ferrite was much higher than that of ZnFe2O4/Fe2O3 composite. Saturation magnetization of non-Zn ferrites was significantly higher than that of ZnFe2O4/Fe2O3 composites. Calcination of non-Zn ferrite resulted in the formation of large amount of non-magnetic Fe2O3,which caused a low magnetization of composite. Because of higher BET surface area and higher saturation magnetization, non-Zn ferrite presented better Cr6+ adsorption property than ZnFe2O4/Fe2O3 composites.  相似文献   

16.
Sr0.8La0.2Zn0.2Fe11.8O19/poly(vinyl pyrrolidone) (PVP) composite fiber precursors were prepared by the sol–gel assisted electrospinning. Subsequently, the M-type ferrite Sr0.8La0.2Zn0.2Fe11.8O19 nanofibers with diameters about 120 nm were obtained by calcination of these precursors at different heat treatment conditions. The precursor and resultant Sr0.8La0.2Zn0.2Fe11.8O19 nanofibers were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray spectrometer and vibrating sample magnetometer. With the calcination temperature increased up to 1,000 °C for 2 h or the holding time prolonged to 12 h at 900 °C, the Sr0.8La0.2Zn0.2Fe11.8O19 particles gradually grow into a hexagonal elongated plate-like morphology due to the dimensional control along the nanofiber length. These elongated plate-like particles will be linked one by one to form the nanofiber with a necklace-like morphology. The magnetic properties of the Sr0.8La0.2Zn0.2Fe11.8O19 nanofibers are closely related to grain sizes, impurities and defects in the ferrite, which are influenced by the calcination temperature, holding time and heating rate. After calcined at 900 °C for 12 h with a heating rate of 3 °C/min, the optimized magnetic properties are achieved with the specific saturation magnetization 75.0 A m2 kg−1 and coercivity 426.3 kA m−1 for the Sr0.8La0.2Zn0.2Fe11.8O19 nanofibers.  相似文献   

17.
Summary Previous study of the hydration and ageing products of two cement pastes created the basis for the postulate of the course of solid-state reactions between the portlandite Ca(OH)2 and the CO2 from air in the hydrated and air dry cement. XRD basal spacing d(001) of portlandite exceeded the nominal value and increased with ageing, with the wetting and drying procedure and with carbonate content of the paste, indicating that a part of OH- ions was gradually substituted by CO32- ions, which are about twice bigger. IR spectroscopy showed a considerable content of portlandite, of CO32- of water and silicates. Also HCO3- H2O and CO2 in cavities between hexagonal rings and hexagonal hydrates were indicated. By MS (mass spectrometry) in vacuum the evaporation of sorbed water was detected at 100-120°C, of gel water at 350°C of portlandite water at 400°C and of high temperature water between 500 and 700°C, simultaneously with CO2 escape. Slightly higher peak temperatures were found by the TG test either in air or in argon. From these results and from geometric considerations it is postulated that the solid-state reactions take place on ageing of the cement paste and on its heating: hexagonal portlanditecalcium carbonate hydroxy hydratecalcium carbonate hydratehexagonal vaterite and/or orthorhombic aragoniterhombohedral calcite The analysis of the standard files of the calcium carbonate hydroxy hydrates supports this postulate and indicates a gradual transformation.  相似文献   

18.
The synthesis of new compounds based on Bi2O3 is investigated because they can be used as new environmentally friendly inorganic pigments. Chemical compounds of the (Bi2O3)1–x(Er2O3)x type were synthetized. The host lattice of these pigments is Bi2O3 that is doped by Er3+ ions. The incorporation of doped ions provides interesting colours and contributes to an increase in the thermal stability of these compounds. The simultaneous TG-DTA measurements were used for determination of the temperature region of the pigment formation and thermal stability of pigments.  相似文献   

19.
Chromium doped spinels LiCrYMn2−YO4 (0.2≤Y≤0.8) has been synthesized by the sucrose-aided combustion procedure. The thermal behaviour, phase homogeneity and structural characteristics of the samples were studied by thermal analysis, coupled mass spectrometry, and room-and high-temperature X-ray diffraction methods. It was found that the ‘as prepared’ samples contained residual organic impurities undetectable for X-ray diffraction, that burn out completely at 400°C. Samples treated between 400 and 750°C are single phase spinels, whose crystallites size increase from 10 to 50 nm on increasing the temperature. Cr-doping enhances the thermal stability of the spinels, which augments on increasing the Cr content Y. The enhanced thermal stability of the spinels has been accounted for based on the high excess stabilization energy of Cr3+ in octahedral ligand field.  相似文献   

20.
The formation of (Ln3+)2(M4+)2O7 (Ln = Gd, Dy; M = Zr, Hf) nanocrystallites obtained by annealing mixed hydroxides LnM(OH)7 · nH2O (precursors) synthesized by coprecipitation has been studied by synchronous thermal analysis, X-ray diffraction (normal and anomalous diffraction of synchrotron radiation), and EXAFS. In the systems under consideration, heat treatment of the X-ray amorphous precursors leads to their dehydration, and at 600–700°C, nanocrystallites with an fcc structure of disordered fluorite start forming. A further increase in temperature is accompanied by crystallite growth (CDD) and considerable change in the local structure of the heat-treated compounds. The crystallization enthalpies and activation energies have been determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号