首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 196 毫秒
1.
A study is made of certain dominant frequencies in the acoustic noise spectrum of the magnetic resonance imaging system. Motivated by both spring and string ideas, we investigate whether the contributions to the sound from certain frequencies can be canceled by the appropriate gradient pulse sequence design. From both simulations and experiments, vibrations resulting from an impulsive force associated with a ramping up of a gradient pulse are shown to be cancelled immediately upon the application of another impulsive force coming from the subsequent appropriately timed ramping down of that pulse. A general approach to suppression of multiple-frequency contributions involving a series of gradient pulses with variable timings is given for the cancellations between pairs of impulsive forces. Various examples are confirmed through string simulations, MRI experiments, and linear response theory. This also provides a foundation to explain some results in previous papers on this subject. The method suggests that a variety of pulse profiles and timing combinations can be used to attenuate important contributions to the acoustic spectrum.  相似文献   

2.
Finite gradient pulse lengths are traditionally considered a nuisance in q-space diffusion NMR and MRI, since the simple Fourier relation between the acquired signal and the displacement probability is invalidated. Increasing the value of the pulse length leads to an apparently smaller value of the estimated compartment size. We propose that q-space data at different gradient pulse lengths, but with the same effective diffusion time, can be used to identify and quantify components with free or restricted diffusion from multiexponential echo decay curves obtained on cellular systems. The method is demonstrated with experiments on excised human brain white matter and a series of model systems with well-defined free, restricted, and combined free and restricted diffusion behavior. Time-resolved diffusion MRI experiments are used to map the spatial distribution of the intracellular fraction in a yeast cell suspension during sedimentation, and observe the disappearance of this fraction after a heat treatment.  相似文献   

3.
In NMR diffusometry, one often uses the short gradient pulse (SGP) limit approximation in the interpretation of data from systems with restricted diffusion. The SGP limit approximation means that the gradient pulse length, delta, is so short that the spins do not diffuse during the pulse duration, but this condition is rarely met. If the length scale of the pores corresponds to the molecular mean square displacement during the gradient pulse, the measured echo intensities become a function of the gradient pulse length. Here, we have studied highly concentrated emulsions to show how the length of the gradient pulse influences NMR diffusion experiments. We have focused on molecules confined to one pore and molecules that can migrate through the porous system. For the former the echo decays give smaller pores than the actual case and for the latter we show large changes in echo decay depending on the gradient pulse length, everything else being equal.  相似文献   

4.
Diffusion NMR may provide, under certain experimental conditions, micro-structural information about confined compartments totally non-invasively. The influence of the rotational angle, the pulse gradient length and the diffusion time on the diffusion diffraction patterns and q-space displacement distribution profiles was evaluated for ensembles of long cylinders having a diameter of 9 and 20 microm. It was found that the diffraction patterns are sensitive to the rotational angle (alpha) and are observed only when diffusion is measured nearly perpendicular to the long axis of the cylinders i.e., when alpha= 90 degrees +/- 5 degrees under our experimental conditions. More importantly, we also found that the structural information extracted from the displacement distribution profiles and from the diffraction patterns are very similar and in good agreement with the experimental values for cylinders of 20 microm or even 9 microm, when data is acquired with parameters that satisfy the short gradient pulse (SGP) approximation (i.e., delta -->0) and the long diffusion time limit. Since these experimental conditions are hardly met in in vitro diffusion MRI of excised organs, and cannot be met in clinical MRI scanners, we evaluated the effect of the pulse gradient duration and the diffusion time on the structural information extracted from q-space diffusion MR experiments. Indeed it was found that, as expected, accurate structural information, and diffraction patterns are observed when Delta is large enough so that the spins reach the cylinders' boundaries. In addition, it was found that large delta results in extraction of a compartment size, which is smaller than the real one. The relevance of these results to q-space MRI of neuronal tissues and fiber tracking is discussed.  相似文献   

5.
The basic concepts necessary to understand the physical basis of NMR imaging are presented in this didactic article. It is intended as a starting point for the radiologist or medical physicist who is addressing the topic of NMR for the first time. The basis of the NMR phenomena is described with introduction of the concepts of magnetic moment, magnetic fields, magnetic resonance, net magnetic moment of a sample, NMR excitation and NMR emission. The equipment necessary to observe these NMR properties of matter is summarized as well as the procedures for basic pulsed NMR experiments. The physical concepts for spatial localization of NMR emissions are introduced with physical analogies to stringed musical instruments. Several alternative imaging modalities are compared with greatest emphasis on the inversion recovery technique which yields images weighted by tissue T1 values. The six subsystems of an NMR imaging device (primary magnet, computer, radio equipment, magnetic gradient, data storage and display subsystems) are described in an overview fashion. The paper is followed by a series of study questions to test the reader's comprehension of basic NMR imaging concepts.  相似文献   

6.
使用梯度脉冲压制水峰已广泛地应用于生物样品的NMR实验,一个选择性90°脉冲接一个纵向的散相梯度脉冲破预期能得到好的去水峰效果,然而基于下面的三方面的原因,梯度脉冲去水峰的效果受到了限制,其一是梯度散相的动力学过程表明总磁化强度的衰减是需要时间的,其二是纵向弛豫T1机制在梯度脉冲作用过程中不可避免,其三是辐射阻尼效应力图将磁化强度推向z方向.在本文中我们定量地分析了这三种机制在压水峰过程中的作用.  相似文献   

7.
蛋白质NMR中最基本的实验是HSQC实验.在HSQC实验中,水峰压制的主要方法之一是利用一对与异核旋磁比比值相适应的梯度脉冲.该文介绍一种简单易行的方法,只需对这一对脉冲进行适当的延长便能使得水峰几乎完全消失.  相似文献   

8.
Almost all NMR imaging and localized spectroscopic methods fundamentally rely on the use of magnetic field gradients. It follows that precise information on gradient waveform shape and rise-times is often most useful in experimental MRI. We present a very simple and robust method for measuring the time evolution of a magnetic field gradient. The method is based on the analysis of the NMR signal in the time domain, and requires no specialized field measurement probes for its implementation. The technique makes use of the principal that for small flip angles the excitation profile is a good approximation to the Fourier transform of the radio frequency pulse shape. Creation of the NMR signal can be considered as an inverse Fourier transform and thus variation of the gradient strength during the excitation pulse influences the shape of the NMR signal. Although originally designed for measurement of the rise time only, we have now extended the technique to measure the exact time course of the gradient. The theory is confirmed by experimental results for gradient waveform field measurements in a high-field vertical bore system.  相似文献   

9.
The displacement scale dependent molecular dynamics of solvent water molecules flowing through β-lactoglobulin gels are measured by pulse gradient spin echo (PGSE) nuclear magnetic resonance (NMR). Gels formed under different p H conditions generate structures which are characterized by magnetic resonance imaging (MRI) and PGSE NMR measured dynamics as homogeneous and heterogeneous. The data presented clearly demonstrate the applicability of the theoretical framework for modeling hydrodynamic dispersion to the analysis of protein gels.  相似文献   

10.
This paper presents a software program, the Virtual NMR Spectrometer, for computer simulation of multichannel, multidimensional NMR experiments on user-defined spin systems. The program is capable of reproducing most features of the modern NMR experiment, including homo- and heteronuclear pulse sequences, phase cycling, pulsed field gradients, and shaped pulses. Two different approaches are implemented to simulate the effect of pulsed field gradients on coherence selection, an explicit calculation of all coherence transfer pathways, and an effective approximate method using integration over multiple positions in the sample. The applications of the Virtual NMR Spectrometer are illustrated using homonuclear COSY and DQF COSY experiments with gradient selection, heteronuclear HSQC, and TROSY. The program uses an intuitive graphical user interface, which resembles the appearance and operation of a real spectrometer. A translator is used to allow the user to design pulse sequences with the same programming language used in the actual experiment on a real spectrometer. The Virtual NMR Spectrometer is designed as a useful tool for developing new NMR experiments and for tuning and adjusting the experimental setup for existing ones prior to running costly NMR experiments, in order to reduce the setup time on a real spectrometer. It will also be a useful aid for learning the general principles of magnetic resonance and contemporary innovations in NMR pulse sequence design.  相似文献   

11.
Two-dimensional diffusion exchange experiments in the presence of a strong, static magnetic field gradient are presented. The experiments are performed in the stray field of a single sided NMR sensor with a proton Larmor frequency of 11.7 MHz. As a consequence of the strong and static magnetic field gradient the magnetization has contributions from different coherence pathways. In order to select the desired coherence pathways, a suitable phase cycling scheme is introduced. The pulse sequence is applied to study diffusion as well as the molecular exchange properties of organic solvents embedded in a mesoporous matrix consisting of a sieve of zeolites with a pore size of 0.8 nm and grain size of 2 μm. This pulse sequence extends the possibilities of the study of transport properties in porous media, with satisfying sensitivity in measurement times of a few hours, in a new generation of relatively inexpensive low-field NMR mobile devices.  相似文献   

12.
High speed switching of current in gradient coils within high magnetic field strength magnetic resonance imaging (MRI) scanners results in high acoustic sound pressure levels (SPL) in and around these machines. Many studies have already been conducted to characterize the sound field in and around MRIs and various methods have been investigated to attenuate the noise generated. In the work presented here a computational vibro-acoustic model was developed based on an iteratively modified and validated finite element (FE) model to characterize the acoustic noise properties of the gradient coil. The simulation results from the computational model were verified through experimental noise measurement for the gradient coil insert in a 4 T MRI scanner by using swept sinusoidal time waveform inputs. Comparisons show that the computational model predicts the noise characteristic properties extremely accurately. There are three dominant frequency bands where the SPL is much higher than those at other frequencies. The SPL in the horizontal direction is much higher than that in the vertical direction due to the excitation to the horizontally placed X coil. The SPL to the inner surface of the coil is higher than far from the inner surface, which proves that the acoustic noise is radiated from the inner surface and primarily caused by the normal vibration of the inner surface. Further verification was conducted by using two types of trapezoidal sequence inputs usually used, which is to simulate real scanning sequences for small animals. Again the accuracy of the developed model is verified. The validated acoustic computational model could be used as an effective method to predict the noise that would be produced by a coil in the design stage. Modification of the structural design or the excitation pulse could be performed to reduce the acoustic noise when the gradient coil is in scanning.  相似文献   

13.
Magnetic field gradients play a fundamental role in MR imaging and localized spectroscopy. The MRI experiment, in particular fast MRI, relies on precise gradient switching, which has become more demanding with the constantly growing number of fast imaging techniques. Here we present a simple MR method to measure the behavior of a magnetic field gradient waveform in an MR scanner. The method employs excitation of a thin slice, followed by application of the studied gradient and simultaneous FID acquisition. Measurements of different gradient waveforms were performed with a spherical phantom filled with doped water and positioned at the isocenter of the gradient set. The presented experiments demonstrate the capability of the technique to measure different gradient waveforms with an estimated error of less than 200 microT/m.  相似文献   

14.
The displacement scale dependent molecular dynamics of solvent water molecules flowing through b \beta -lactoglobulin gels are measured by pulse gradient spin echo (PGSE) nuclear magnetic resonance (NMR). Gels formed under different p H conditions generate structures which are characterized by magnetic resonance imaging (MRI) and PGSE NMR measured dynamics as homogeneous and heterogeneous. The data presented clearly demonstrate the applicability of the theoretical framework for modeling hydrodynamic dispersion to the analysis of protein gels.  相似文献   

15.
The displacement scale dependent molecular dynamics of solvent water molecules flowing through [Formula: see text] -lactoglobulin gels are measured by pulse gradient spin echo (PGSE) nuclear magnetic resonance (NMR). Gels formed under different p H conditions generate structures which are characterized by magnetic resonance imaging (MRI) and PGSE NMR measured dynamics as homogeneous and heterogeneous. The data presented clearly demonstrate the applicability of the theoretical framework for modeling hydrodynamic dispersion to the analysis of protein gels.  相似文献   

16.
The displacement scale dependent molecular dynamics of solvent water molecules flowing through b \beta -lactoglobulin gels are measured by pulse gradient spin echo (PGSE) nuclear magnetic resonance (NMR). Gels formed under different p H conditions generate structures which are characterized by magnetic resonance imaging (MRI) and PGSE NMR measured dynamics as homogeneous and heterogeneous. The data presented clearly demonstrate the applicability of the theoretical framework for modeling hydrodynamic dispersion to the analysis of protein gels.  相似文献   

17.
The nature of the gradient induced electroencephalography (EEG) artifact is analyzed and compared for two functional magnetic resonance imaging (fMRI) pulse sequences with different k-space trajectories: echo planar imaging (EPI) and spiral. Furthermore, the performance of the average artifact subtraction algorithm (AAS) to remove the gradient artifact for both sequences is evaluated. The results show that the EEG gradient artifact for spiral sequences is one order of magnitude higher than for EPI sequences due to the chirping spectrum of the spiral sequence and the dB/dt of its crusher gradients. However, in the presence of accurate synchronization, the use of AAS yields the same artifact suppression efficiency for both pulse sequences below 80 Hz. The quality of EEG signal after AAS is demonstrated for phantom and human data. EEG spectrogram and visual evoked potential (VEP) are compared outside the scanner and use both EPI and spiral pulse sequences. MR related artifact residues affect the spectra over 40 Hz (less than 0.2 μV up to 120 Hz) and modify the amplitude of P1, N2 and P300 in the VEP. These modifications in the EEG signal have to be taken into account when interpreting EEG data acquired in simultaneous EEG-fMRI experiments.  相似文献   

18.
When two pairs of position-encoding pulses are used in a pulsed gradient spin echo (PGSE) NMR experiment, it is possible to examine velocity fluctuations. The one-dimensional version of double PGSE NMR uses identical pulse pairs whose amplitudes are stepped simultaneously. In the two-dimensional version (VEXSY) the pulse pairs are stepped independently, resulting in a velocity exchange spectrum. A key limitation in such experiments is transverse relaxation, so that stimulated echoes are often used as the method of choice. It is shown here that the use of stimulated echoes results in a superposition of signals arising from different magnetization pathways such that the spin phases may reflect both the sum and difference of displacements over the pulse pair encoding times, as well as the displacement over the exchange time between the pulse pairs. A phase cycle scheme that selects desired encodings as required is demonstrated.  相似文献   

19.
The influence of finite length gradient pulses on NMR diffusion experiments on liquids confined to diffuse between two parallel planes is investigated. It is experimentally verified that the pore size decreases when determined using finite gradient pulses if the results are analyzed within the short gradient pulse approximation. The results are analyzed using the matrix formulation. The observed minima in the echo decay profiles are considerably less sharp than theoretical analysis would indicate and we suggest that this is due to the presence of a distribution of pore sizes in the sample. In addition, effects due to the presence of background gradients are discussed. It is argued that effects due to the finite length gradient pulses are relatively minor and in realistic applications the effects due to inhomogeneities in pore sizes and effects due to background gradients will constitute more serious problems in pore size determinations by means of NMR diffusometry.  相似文献   

20.
利用传播子方法研究了在一般非线性场梯度下NMR信号的扩散衰减. 在自由扩散和平板间的限制扩散情况下获得了扩散衰减因子的理论表达式. 该表达式适用范围宽,且具有较简单的数学形式和明确的物理意义. 文中还将理论预测与蒙特卡罗模拟结果进行了比较. 结果表明:文中所采用的理论方法适合于表述自由扩散和短脉冲近似下的受限扩散;蒙特卡罗模拟提供了一种定性研究MRI和NMR中非均匀场梯度扩散衰减的方法.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号