首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A high-resolution analysis of the {nu(2), nu(3)} and {nu(4), nu(6)} bands of the two isotopomers of chloryl fluoride F(35)ClO(2) and F(37)ClO(2) has been carried out for the first time using simultaneously infrared spectra recorded around 16&mgr;m and 26&mgr;m with a resolution of ca. 0.003 cm(-1) and microwave and submillimeter-wave transitions occurring within the vibrational states 2(1), 3(1), 4(1), and 6(1). Taking into account the Coriolis resonances which link the rotational levels of the {2(1), 3(1)} and the {4(1), 6(1)} interacting states, it was possible to reproduce very satisfactorily the observed transitions and to determine accurate vibrational energies and rotational constants for the upper states 2(1), 3(1), 4(1), and 6(1) of both the (35)Cl and (37)Cl isotopic species. Copyright 2001 Academic Press.  相似文献   

2.
High-resolution Fourier transform infrared spectrum of the nu(2) band (1590-1780 cm(-1)) of deuterated formaldehyde D(2)CO has been recorded. More than 2500 rovibrational transitions have been assigned up to J(max) = 52 and K(max)(a) = 17. The upper state v(2) = 1 (A(1)) was found to be perturbed by a DeltaK(a) = 2 interaction with the v(4) = 2 (A(1)) state. To explain the resonance perturbation in the v(2) = 1 state, some lines of the 2nu(4) band (the band center at about 1868 cm(-1)) have also been assigned. Both bands were fitted simultaneously to the Watson-type rotational Hamiltonian using I(r) representation in A reduction, and the mutual interaction was taken into account. As a result, the rotational parameters of the v(2) = 1 state up to eighth order and the interaction parameter have been obtained. Copyright 2001 Academic Press.  相似文献   

3.
We measured absolute line intensities in two bands of (12)C(2)H(2) near 7.5 μm, namely the nu(4) + nu(5)(Sigma(+)(u))-0(Sigma(+)(g)) and nu(4) + nu(5)(Delta(u))-0(Sigma(+)(g)) bands, using Fourier transform spectroscopy with an accuracy estimated to be better than 2%. Using theoretical predictions from Watson [J. K. G. Watson, J. Mol. Spectrosc. 188, 78 (1998)], the observation of the forbidden nu(4) + nu(5)(Delta(u))-0(Sigma(+)(g)) band and the Herman-Wallis behavior exhibited by its rotational lines were studied quantitatively in terms of two types of interactions affecting the levels involved by the band: l-type resonance and Coriolis interaction. In the case of the nu(4) + nu(5)(Sigma(+)(u))-0(Sigma(+)(g)) band, the influence of l-type resonance is also confirmed. We also attributed the intensity asymmetry observed between the R and P branches of that latter band to a Coriolis interaction with l = 1 levels. We did not observe the nu(4) + nu(5)(Sigma(-)(u))-0(Sigma(+)(g)) band, consisting only of a Q branch, in agreement with Watson's prediction. Copyright 2000 Academic Press.  相似文献   

4.
The effective operator approach is applied to the calculation of both line positions and line intensities of the (13)C(16)O(2) molecule. About 11 000 observed line positions of (13)C(16)O(2) selected from the literature have been used to derive 84 parameters of a reduced effective Hamiltonian globally describing all known vibrational-rotational energy levels in the ground electronic state. The standard deviation of the fit is 0.0015 cm(-1). The eigenfunctions of this effective Hamiltonian have then been used in fittings of parameters of an effective dipole-moment operator to more than 600 observed line intensities of the cold and hot bands covering the nu(2) and 3nu(2) regions. The standard deviations of the fits are 3.2 and 12.0% for these regions, respectively. The quality of the fittings and the extrapolation properties of the fitted parameters are discussed. A comparison of calculated line parameters with those provided by the HITRAN database is given. Finally, the first observations of the 2nu(1) + 5nu(3) and nu(1) + 2nu(2) + 5nu(3) absorption bands by means of photoacoustic spectroscopy (PAS) is presented. The deviations of predicted line positions from observed ones is found to be less than 0.1 cm(-1), and most of them lie within the experimental accuracy (0.007 cm(-1)) once the observed line positions are included in the global fit. Copyright 2000 Academic Press.  相似文献   

5.
High-resolution Raman spectra of the nu(2) band of SF(6) have been recorded at a temperature of 195 K (dry ice) and a pressure of 39 mbar. These spectra were analyzed using a new set of programs specially written for XY(6) molecules. These programs, called HTDS (highly spherical top data system) in reference to the set of programs called STDS (spherical top data system written for XY(4) molecules) can be freely accessible through ftp (user anonymous) at jupiter.u-bourgogne.fr or on the web at the URL http://www.u-bourgogne.fr/LPUB/shTDS.html. The study of nu(2) was made using a Hamiltonian developed through the third order. Four parameters were determined. The standard deviation obtained using about 559 data up to J < 61 is 0.0021 cm(-1). This result is used to refine by simultaneous analysis the nu(2) and nu(2) + nu(6) bands of SF(6). This new fit allows the determination for the first time of some nu(6) parameters. The values obtained for this band (forbidden in Raman and in infrared) will be used to study the infrared hot bands in the nu(3) and nu(4) regions. Copyright 2000 Academic Press.  相似文献   

6.
The spectrum of the nu(9) fundamental band of ethylene-d(4) (C(2)D(4)) has been measured with an unapodized resolution of 0.004 cm(-1) in the frequency range of 2300-2400 cm(-1) using a Fourier transform infrared spectrometer. A total of 549 transitions have been assigned and fitted using a Watson's A-reduced Hamiltonian in the I(r) representation to derive rovibrational constants for the upper state (v(9) = 1) up to five quartic terms with a standard deviation of 0.00087 cm(-1). They represent the most accurate rovibrational constants for the nu(9) band so far. About 30 transitions of K(a)(') = 0, one transition of nu(9) which were identified to be perturbed possibly by the nearby nu(11) and nu(2) + nu(12) transitions, were not included in the final fit. The nu(9) band of C(2)D(4) was found to be basically B-type with an unperturbed band center at 2341.836 94 +/- 0.000 13 cm(-1). Copyright 2000 Academic Press.  相似文献   

7.
The nu(3), nu(5), and nu(6) fundamental bands of the (13)CH(3)D molecule have been studied with Fourier transform infrared spectroscopy. The spectra and results for the parent species (12)CH(3)D (O. N. Ulenikov, G. A. Onopenko, N. E. Tyabaeva, J. Schroderus, and S. Alanko, J. Mol. Spectrosc. 193, 249-259 (1999)) have been used to assign and analyze about 1900 lines belonging to the (13)CH(3)D isotopic species. About 850 ground state combination differences with DeltaK = 0 were calculated, which allowed us to determine the J-dependent ground state rotational constants. The K-dependent constants as well as those describing the a(1)-a(2) (K = 3) splitting were fixed to the values obtained for the (12)CH(3)D species. The (v(3) = 1), (v(5) = 1), and (v(6) = 1) states were fit simultaneously by including the intervibrational interactions in the Hamiltonian. The rotational energies, the rotational and centrifugal distortion constants, as well as the resonance parameters involving the three states have been determined and discussed. Copyright 2000 Academic Press.  相似文献   

8.
Results of a high-resolution infrared study of the spectroscopy of monodeuterated methyl fluoride, CH(2)DF, are reported for the first time. Spectra ranging from 500 to 3300 cm(-1) have been obtained and cover all the fundamental bands at resolutions down to 0.005 cm(-1). The two lowest energy fundamentals, the nu(5) and nu(6) bands, have been analyzed in detail. Since the molecule has C(s) symmetry, in principle both these bands are AB hybrids, since they belong to the irreducible representation A'. However, it was found that both are almost pure A-type bands. A total of 597 A-type lines of the nu(5) band and 619 A-type lines of the nu(6) band have been assigned. Vibrational and rotational spectroscopic constants have been determined by least-squares fitting to the data. An improved band center for nu(7) is also reported. Copyright 2001 Academic Press.  相似文献   

9.
High-resolution (Deltavarsigma = 2.3 and 2.9 x 10(-3) cm(-1)) FTIR spectra of natural and (35)Cl monoisotopic CH(3)CF(2)Cl have been recorded at -70 degrees C in the 600-1400 cm(-1) range. The bands nu(7), nu(8), and nu(15) have been rotationally analyzed for both isotopic varieties. With the help of predictions based on nu(8) parameters, the millimeter-wave spectrum of the (35)Cl species in the v(8) = 1 state has been observed and jointly fitted with the IR data. Only a small number of local perturbations have been detected in the spectra. Altogether more than 8000 IR transitions have been fitted with an experimental precision of ca. 3 x 10(-4) cm(-1). Copyright 2000 Academic Press.  相似文献   

10.
Spectra of (10)B monoisotopic diborane, B(2)H(6), have been recorded at high resolution (2-3 x 10(-3) cm(-1)) by means of Fourier transform spectroscopy in the region 700-1300 cm(-1). A thorough analysis of the nu(18) a-type, nu(14) c-type, and nu(5) symmetry-forbidden band has been performed. Of particular interest are the results concerning the nu(5) symmetry-forbidden band, which is observed only because it borrows intensity through an a-type Coriolis interaction with the very strong nu(18) infrared band located approximately 350 cm(-1) higher in wavenumber. The nu(5) band has been observed around 833 cm(-1) and consists of a well-resolved Q branch accompanied by weaker P- and R-branch lines. Very anomalous line intensities are seen, with the low K(a) transitions being vanishingly weak, and Raman-like selection rules observed. The determination of the upper state Hamiltonian constants proved to be difficult since the corresponding energy levels of each of the bands are strongly perturbed by nearby dark states. To account for these strong localized resonances, it was necessary to introduce the relevant interacting terms in the Hamiltonian. As a result the upper state energy levels were calculated satisfactorily, and precise vibrational energies and rotational and coupling constants were determined. In particular the following band centers were derived: nu(0) (nu(5)) = 832.8496(70) cm(-1), nu(0) (nu(14)) = 977.57843(70) cm(-1), and nu(0) (nu(18)) = 1178.6346(40) cm(-1). (Type A standard uncertainties (1varsigma) are given in parentheses.) Copyright 2000 Academic Press.  相似文献   

11.
H(2)-broadening coefficients have been measured for 66 rovibrational lines of NH(3) at room temperature in the (P)P and (R)P branches of the nu(4) band in the range 1470-1600 cm(-1), using a high-resolution Fourier transform spectrometer. The collisional widths are obtained by fitting Voigt profiles to the measured shapes of the lines. The broadening coefficients are found to decrease on the whole as J increases and they increase with K for a given J value. The results are compared with those calculated from a semiclassical model in which the inversion vibration of NH(3) and collision-induced transitions with DeltaK = 0 and DeltaK = +/- 3 are taken into account. The intermolecular potential used includes electrostatic, induction, and dispersion energy contributions. The calculations performed by considering only DeltaK = 0 transitions provide significantly lower broadenings but with a satisfactory J and K dependence. The same trends are obtained for the broadening coefficients in inversion-rotation transitions and in the Q branch of the nu(1) parallel band of NH(3). Copyright 2001 Academic Press.  相似文献   

12.
The 3nu(2) overtone band of deuterium oxide, D(2)O, centered at 3474.3193 cm(-1), has been measured with high resolution in a 4-m base-length White cell attached to a Fourier transform spectrometer. The analysis of the spectrum led to the assignment of 347 transitions in this band, defining rovibrational energy levels in the (030) state up to K(a) = 7 for J as high as 9, and lower K(a) levels for J as high as 16. The (030) state was treated as an isolated state, following a Padé-Borel approximation in the effective Hamiltonian. Of the 115 energy levels included in the analysis, 80% were reproduced by the 21 adjusted parameters to within 0.0008 cm(-1), and the largest error was 0.0017 cm(-1). Copyright 2000 Academic Press.  相似文献   

13.
The gas-phase IR spectrum of the nu(2) (A(1), 1610.33 cm(-1)) band of the deuterated isotopomer of diazirine, D(2)CN(2), a three-membered ring compound which belongs to the molecular symmetry point group C(2v), has been studied at a resolution of about 0.005 cm(-1). This vibrational mode which can be approximately described as N&dbond;N stretching is widely perturbed. This is due to various interactions with the tetrad consisting of the binary combinations nu(6) + nu(7) (A(1)), nu(7) + nu(9) (A(2)), nu(5) + nu(6) (B(2)), and nu(5) + nu(9) (B(1)), which form a relatively isolated pentad together with nu(2) in the wavenumber region 1560-1610 cm(-1). A simultaneous upper state analysis of nu(2) from a pentad model including these resonances has been performed and a set of spectroscopic parameters has been obtained. Since the four combination bands of the pentad are dark states, only band centers could be determined; in addition for nu(5) + nu(9) and nu(7) + nu(9) also the term (B - C)/2 has been obtained. A number of Coriolis interaction constants and the vibrational resonance (with nu(6) + nu(7)) parameter have been calculated as well. Copyright 2001 Academic Press.  相似文献   

14.
The Fourier transform infrared (FTIR) spectrum of the nu(6) band of formic acid (HCOOH) has been recorded with a resolution of 0.0024 cm(-1) in the spectral range 1050-1160 cm(-1). The nu(6) band was found to be strongly perturbed by the nearby nu(8) band centered at about 1033.5 cm(-1). Using a Watson's A-reduced Hamiltonian in the I(r) representation, and with the inclusion of a-type Coriolis coupling constant, a simultaneous fit of nu(6) and nu(8) was performed. A total of 2485 infrared transitions including about 700 perturbed transitions of nu(6) and 19 transitions of nu(8) was fitted with an rms uncertainty of 0.0006 cm(-1). Accurate rovibrational constants up to sextic order for both nu(6) and nu(8) were obtained. The nu(6) band was analyzed to be a type AB hybrid with a band center at 1104.852109 +/- 0.000050 cm(-1). The band center for nu(8) was found to be 1033.4647 +/- 0.0021 cm(-1). Copyright 2000 Academic Press.  相似文献   

15.
The gas-phase infrared spectrum of the nu(4) fundamental band of CH(2)(79)BrF was recorded in the 1010-1116 cm(-1) wavenumber region using a TDL spectrometer. In this first high-resolution investigation of the synthesized (79)Br isotopic form, more than 10 200 transitions of this a/b-hybrid band centered at 1068.5385 cm(-1) were assigned and, using the Watson's A-reduced Hamiltonian in the I(r)-representation, a reliable set of molecular constants for the excited state v(4) = 1 was determined. From ground state combination differences having rotational quantum numbers J and K(a) up to 97 and 21, respectively, improved and extended ground state rotational and centrifugal distortion constants were calculated as well. Comparison between the observed and calculated band intensities in appropriate regions of the spectrum gave an estimate of the transition dipole-moment ratio along the a and b axes as ||Deltaμ(a)/Deltaμ(b) || = 2.0 +/- 0.2, in agreement with the predicted theoretical value of 1.99. Copyright 2000 Academic Press.  相似文献   

16.
Stimulated emission pumping (SEP) spectroscopy has been used to examine a low energy region (E(vib) approximately 4400 cm(-1)) of &Xtilde;(1)Sigma(+)(g) acetylene at higher resolution than was possible in previous dispersed fluorescence studies. The expected bright state, nu(2) + 4nu(4), is observed to be coupled to the nearly degenerate 7nu(4) state by a Coriolis mechanism. A least-squares analysis yields values for zero-order vibrational energies, rotational constants, and a Coriolis-coupling coefficient that are all consistent with expectations. Calculated relative intensities of SEP transitions, accounting for interference due to axis-switching effects, are also consistent with observations. Implications of the observed Coriolis resonance with regard to global acetylene vibrational dynamics are also discussed. Copyright 2000 Academic Press.  相似文献   

17.
N(2)-broadening coefficients have been measured for 35 lines of C(2)H(4) in the nu(7) fundamental transition, using a tunable diode-laser spectrometer. These lines with 3 相似文献   

18.
A spectrum of HSiF(3) has been recorded at room temperature with a gas pressure of 20-50 Torr in the near-infrared region. A laser photoacoustic spectrometer consisting of a longitudinal resonant cell coupled to a titanium:sapphire ring laser was employed. The 5nu(1) and 6nu(1) overtone bands of H(28)SiF(3) associated with the Si-H stretching have been observed at high resolution (3 x 10(-2) cm(-1)) in the regions 10 900-10 960 and 12 875-12 925 cm(-1), respectively. About 450 lines of the 5nu(1)-0 band have been assigned (J 相似文献   

19.
徐文刚  沈之烨 《光学学报》1989,9(8):706-713
用高分辨二极管激光光谱仪对乙炔v_5区域的几个Q支作了研究.在725cm~(-1)附近观察到(2v_4+v_5)I-2v_4的Q支.并对(2v_5-v_5)和(v_4+v_5)-v_4的Q支进行了观察.观测到一些微扰现象.对观测到的谱线利用最小二乘法进行了拟合,得到了部分分子常数.  相似文献   

20.
The lowest frequency degenerate fundamental band of CH(3)SiD(3) (v(12) = 1 <-- 0) centered around 418 cm(-1) was measured in order to investigate the vibration-torsion-rotation interactions in a symmetric-top molecule with a single torsional degree of freedom. The spectrum was recorded at an instrumental resolution of 0.004 cm(-1) using a Bomem Fourier transform spectrometer. The temperature and pressure of the sample were 180 K and 2 Torr, respectively. Because of the Coriolis coupling between the torsional stack with one quantum of the silyl rock excited and the corresponding stack for the ground vibrational state, torsional splittings are measured that are substantially larger than expected simply from the observed increase in the barrier height. Due to the local nature of the Coriolis perturbation, the significantly enhanced torsional splittings are confined to a few (K, varsigma) rotational series; here varsigma = -1, 0, 1 labels the torsional sublevels. The current measurements of the nu(12) band and frequencies from previously reported studies in the ground vibrational state were fitted to within experimental uncertainty using an effective Hamiltonian which was used for the analyses of similar spectra in CH(3)SiD(3) and CH(3)CD(3). Spectroscopic parameters characterizing the states v(12) = 0 and 1 and their interactions were determined, including several Coriolis-coupling constants. Copyright 2000 Academic Press.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号