首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
The anisotropy of the local magnetic dipole field is calculated for interstitial lattice sites of tetragonal, trigonal, or orthorhombic symmetry in bcc and hep crystals. In addition, for interstitial sites of uniaxial symmetry the effects of lattice deformations on the magnetic dipole field are investigated. A discussion of experimental results obtained from muon spin rotation experiments on Co and Gd shows that in these metals lattice-deformation effect may influence the local dipole fields significantly.  相似文献   

2.
A lattice Boltzmann model for the Maxwell’s equations without sources is proposed by taking separate sets of distribution functions for the electric and magnetic fields and using the higher-order moment method. The higher-order moment method is based on the solution of a series of partial differential equations obtained by multi-energy-level techniques, multi-scale techniques, and Chapman–Enskog expansion, As numerical examples, some classical electromagnetic phenomena, such as the electric field and equipotential lines around an electrostatic dipole, the electric and magnetic fields around oscillating dipoles are given. These numerical results agree well with classical ones.  相似文献   

3.
Paramagnetic behaviours of the salts of the iron group depend upon the asymmetric ligand fields acting upon the central paramagnetic ion, as also upon the structure and packing of the crystal lattice. A general picture of the energy levels of the paramagnetic ions is, available from the ligand field theory, based upon the coordinated data on X-ray structure, magnetic susceptibility and anisotropy, e.p.r and optical absorption spectra. When all these facts have been taken into account it is observed that there is an almost universal discrepancy between the observed thermal magnetic behaviours, particularly the anisotropy and those theoretically predicted on the assumption that the ligand fields are independent of temperature. The discrepancy cannot usually be covered by the change in the fields due to normal thermal expansion of the lattice. It is pointed out that these may be occasionally due to electric dipole ordering in the crystals at certain temperatures but more generally due to continuous types of transition in the crystal lattice with temperature, which change the lattice packing in an anomalous manner and thus cause a thermal variation in the asymmetric ligand fields.  相似文献   

4.
The perpendicular critical fields of a superconducting film have been strongly enhanced by using a nanoengineered lattice of magnetic dots (dipoles) on top of the film. Magnetic-field-induced superconductivity is observed in these hybrid superconductor/ferromagnet systems due to the compensation of the applied field between the dots by the stray field of the dipole array. By switching between different magnetic states of the nanoengineered field compensator, the critical parameters of the superconductor can be effectively controlled.  相似文献   

5.
The singularities of the time autocorrelation functions (ACFs) of magnetically diluted spin systems with dipole–dipole interaction (DDI), which determine the high-frequency asymptotics of autocorrelation functions and the wings of a magnetic resonance line, are studied. Using the self-consistent fluctuating local field approximation, nonlinear equations are derived for autocorrelation functions averaged over the independent random arrangement of spins (magnetic atoms) in a diamagnetic lattice with different spin concentrations. The equations take into account the specificity of the dipole–dipole interaction. First, due to its axial symmetry in a strong static magnetic field, the autocorrelation functions of longitudinal and transverse spin components are described by different equations. Second, the long-range type of the dipole–dipole interaction is taken into account by separating contributions into the local field from distant and near spins. The recurrent equations are obtained for the expansion coefficients of autocorrelation functions in power series in time. From them, the numerical value of the coordinate of the nearest singularity of the autocorrelation function is found on the imaginary time axis, which is equal to the radius of convergence of these expansions. It is shown that in the strong dilution case, the logarithmic concentration dependence of the coordinate of the singularity is observed, which is caused by the presence of a cluster of near spins whose fraction is small but contribution to the modulation frequency is large. As an example a silicon crystal with different 29Si concentrations in magnetic fields directed along three crystallographic axes is considered.  相似文献   

6.
We propose an experimental scheme to show that the nonlinear magnetic solitary excitations can be achieved in an atomic spinor Bose–Einstein condensate confined in a blue-detuned optical lattice. Through exact theoretical calculations, we find that the magnetic solitons can be generated by the static magnetic dipole–dipole interaction (MDDI), of which the interaction range can be well controlled. We derive the existence conditions of the magnetic solitons under the nearest-neighboring, the next-nearest-neighboring approximations as well as the long-range consideration. It is shown that the long-range feature of the MDDI plays an important role in determining the existence of magnetic solitons in this system. In addition, to facilitate the experimental observation, we apply an external laser field to drive the lattice, and the existence regions for the magnetic soliton induced by the anisotropic light-induced dipole–dipole interaction are also investigated.  相似文献   

7.
It is shown that lattice deformations around interstitial atoms may give a significant contribution to the local magnetic dipolar field at the interstitial site. An analysis of the dipole field measured for mouns on octahedral interstitial sites in Co shows that 1/4 of the dipole field results from lattice deformations. The double force tensor of the muon is found to be nearly isotropic and of the order of magnitude of 4eV.  相似文献   

8.
Some peculiarities of dipole ordering in systems with uniaxial or cubic anisotropy with an arbitrary degree of dilution are analyzed in terms of random local field theory. The approach takes into account the effect of thermal and spatial fluctuations of the local fields acting on each particle from its neighbors with an accuracy corresponding to that of the Bethe-Paierls pair clusters approach. We show that ferromagnetic (ferroelectric) structure for uniaxial Ising dipoles distributed on a simple cubic lattice is intrinsically unstable against the fluctuations of the local fields for any concentration of the dipoles. This result is quite different from the prediction of the mean-field theory which implies the possibility of ferromagnetic ordering as a metastable state in field-cooled experiments. The local field fluctuations do not exclude, however, antiferromagnetic ordering above a certain critical concentration. Ferromagnetic ordering is possible for other types of lattice geometries and for an amorphous-like dipole distribution above a certain critical concentration. A simple physical explanation of such behavior is given based on the specific angular dependence of the dipole-dipole interaction that results in a relatively high value of the local field second moment for simple cubic lattice.  相似文献   

9.
Using Ginzburg-Landau theory, we find novel configurations of vortices in superconducting thin films subject to the magnetic field of a magnetic dot array, with dipole moments oriented perpendicular to the film. Sufficiently strong magnets cause the formation of vortex-antivortex pairs. In most cases, the vortices are confined to dot regions, while the antivortices can form a rich variety of lattice states. We propose an experiment in which the perpendicular component of the dot dipole moments can be tuned using an in-plane magnetic field. We show that in such an experiment the vortex-antivortex pair density shows broad plateaus as a function of the dipole strength. Many of the plateaus correspond to vortex configurations that break dot lattice symmetries. In some of these states, the vortex cores are strongly distorted. Possible experimental consequences are mentioned.  相似文献   

10.
The birefringence in a colloidal solution of nanosized magnetite particles in kerosene exposed to constant, alternating, and pulsed magnetic fields is studied. Data on the birefringence kinetics in nonstationary magnetic fields is used to determine the hydrodynamic radius of particle aggregates in solutions. The permanent dipole moment of aggregates and the anisotropy of the magnetic susceptibility are calculated based on the data of magnetooptical experiments. It is shown that the induced dipole moment plays a significant role in an orientation of aggregates of magnetic nanoparticles under the effect of a field.  相似文献   

11.
We review some of the techniques that lead to the effective medium representation of a three-dimensional (3D) periodic metamaterial. We consider a 3D lattice of lead telluride cubic resonators at mid-infrared (MIR) frequencies. Each cubic resonator is modeled with both an electric and a magnetic dipole, through a method called the dual dipole approximation. The electric and magnetic polarizabilities of a cubic resonator are computed via full-wave simulations by mapping the resonator's scattered field under electric/magnetic excitation only to the field radiated by an equivalent electric/magnetic dipole. We then analyze the allowed modes in the lattice, with transverse polarization and complex wavenumber, highlighting the attenuation that each mode experiences after one free space wavelength. We observe the presence of two modes with low attenuation constant, dominant in different frequency ranges, able to propagate inside the lattice: this allows the treatment of the metamaterial as a homogeneous material with effective parameters, evaluated by using various techniques. We then show that the metamaterial under analysis allows for the generation of artificial magnetism (i.e., relative effective permeability different than unity, including negative permeability with low losses) at MIR frequencies.  相似文献   

12.
The ground state of an array of magnetic particles (magnetic dots), which are ordered in a square 2D lattice and whose magnetic moment is perpendicular to the lattice plane, in the presence of an external magnetic field has been analyzed. Such a model is applicable for sufficiently small dots with perpendicular anisotropy that are in a single-domain state and for dots in a strongly inhomogeneous vortex state whose magnetic moment is determined by the vortex core. For the magnetic field perpendicular to the system plane, the entire set of the states has been analyzed from the chessboard antiferromagnetic order of magnetic moments in low fields to the saturated state of the system with the parallel orientations of the magnetic moments of all dots in strong fields. In the presence of the border, the destruction of the chessboard order first occurs at the edges of the system, then near the extended sections of the surface, and finally expands over the entire interior of the array. The critical field at which this simplest state is destroyed is much more weakly than the value characteristic of the ideal infinite system. In contrast to this scenario, the destruction of the saturated state with decreasing field always begins far from the borders. Despite such different behaviors, the magnetic structure in the intermediate range of fields that is obtained with both increasing and decreasing field for finite arrays strongly differs from that characteristic of the ideal infinite system. The role of simple stacking faults of the magnetic dot lattice (such as single vacancies or their clusters) in the remagnetization of the system has been analyzed. The presence of such faults is shown to give rise to the appearance of local destructions of the chessboard antiferromagnetic order at fields that are much weaker than those for an ideal lattice.  相似文献   

13.
Stable spiral domain structures—spiral domains stabilized by a bubble lattice and lattices of spiral domains—in epitaxial ferrite-garnet films have been experimentally investigated. The thermodynamic approach based on the concept of magnetostatic pressure is applied to explain the behavior of a spiral domain structure with a change in temperature or magnetic field. It is shown that phase transitions in spiral domains are related to phase transitions in the bubble lattice.  相似文献   

14.
高速飞行器磁控阻力特性   总被引:3,自引:0,他引:3       下载免费PDF全文
姚霄  刘伟强  谭建国 《物理学报》2018,67(17):174702-174702
采用低磁雷诺数磁流体数学模型,对外加磁场下的高超声速半球体流场进行数值模拟.选取三种简单理想磁场(轴向、径向、周向均布磁场),分析了不同磁场类型对流场结构、气动阻力与洛伦兹阻力的影响及作用机理.研究发现,轴向磁场径向"挤压"效应使得激波外形凸出,且壁面静压存在"饱和现象";径向磁场存在轴向"外推"效应,较大的磁场强度会导致肩部形成高温区;周向磁场下感应电场的存在导致增阻效果很差.进而对比了两种相同驻点磁感应强度特殊分布磁场(偶极子磁场、螺线管磁场)下的流场,发现了不同于理想磁场的径向"扩张"效应.按增阻效果从大到小依次为径向磁场、螺线管磁场、轴向磁场、偶极子磁场、周向磁场.  相似文献   

15.
We consider a ferrofluid system consisting of magnetic particles interacting with a magnetic dipole–dipole interaction. We study the strong magnetic field regime where all magnetic dipoles are completely polarized in the direction of the magnetic field. We introduce a lattice gas model that serves to describe space ordering phenomena in such systems. It is found that, within mean field theory, this model predicts a second order phase transition to a phase with inhomogeneous lamellar-like ordering below a certain critical temperature.  相似文献   

16.
王平  李芳昱  何晓宇 《物理学报》2008,57(9):5442-5447
运用费曼微扰方法分别计算了在磁偶极场、电偶极场和均匀静电场及静磁场中光子转化成轴子的非极化微分截面.在电偶极场中,沿光子传播方向及其反方向上的非极化微分截面为零;而在磁偶极场中,在上述方向上通常则具有非零的微分截面,但当光子传播方向平行于磁场偶极距矢量时,该微分截面为零.在均匀的静磁场和均匀静电场中,只有在光子传播方向及其反方向上具有非零的微分截面,但后者小于前者.在轴子质量趋于零的极限条件下,上述过程和光子转化为引力子的过程表现出某些非常类似的性质. 关键词: 轴子 光子 微分截面  相似文献   

17.
We obtain and analyze an analytical solution to the problem of electromagnetic-wave radiation of the point electric dipole from an anisotropic plasma cylinder to free space. Two cases of the dipole orientation are considered, where the electric dipole is directed along and across a horizontal magnetic field whose direction does not coincide with the axes of a cylindrical coordinate system. We analyze how the conditions and characteristics of the resonance influence of the anisotropic plasma cylinder depend on the strength of the magnetic field and its direction with respect to the dipole moment of the source. Comparative analysis of the resonance influence of the plasma cylinder with horizontal and axial external magnetic fields is performed.  相似文献   

18.
For the frustrated triangular lattice of Ising magnetic moments with an antiferromagnetic interaction, which is in a state with two sublattices, a new type of topological defects with zero energy in the approximation of the interaction between only the nearest-neighbors has been found. These defects have a nonzero magnetic moment, and the magnetization in a low field occurs via the formation of a system of such defects. These properties are valid for a 2D superstructure in the form of a triangular lattice of single-domain magnetic particles with perpendicular anisotropy and dipole coupling.  相似文献   

19.
A thin prolate spheroidal void in an infinite conducting circular cylinder is used to model an internal flaw in a wire rope. The rope is excited by an electric ring current which is a model for a thin solenoid or multi-turn wire loop. The anomalous external fields are computed from the induced electric and magnetic dipole moments of the void. For this type of excitation, the induced axial magnetic dipole moment is the dominant contributor to the scattered field. The results have application to nondestructive testing of wire ropes.  相似文献   

20.
In this paper, we explored magnetic monopole-like responses in metamaterials. We designed a sub-wavelength metamolecule that is composed of two dielectric-spaced split-ring resonators. In response to incident waves, the induced magnetic field in the metamolecule resembles that of a two-dimensional magnetic monopole. The magnetic monopole-like response is resulted from electric resonance of the metamolecule, so an electric dipole is always attached. By combining two mirror-symmetric metamolecules with inward and outward radial magnetic fields, magnetic dipole-like responses can be produced just as an electric dipole is formed by separating two opposite-signed electric charges.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号