首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To clarify the origin of nitrogen of vitamin B12, 15N-labeled aminolevulinic acid (ALA) was prepared and administered to Propionibacterium shermanii. Vitamin B12 thus isolated showed four signals in the nitrogen-15 nuclear magnetic resonance (15N-NMR) spectrum. The nitrogen of [5-15N]riboflavine was incorporated into the benzimidazole part of vitamin B12. Hydroxycobalamin was transformed into cyanocobalamin by treatment with [15N]potassium cyanide, and the 15N-NMR spectrum was measured. The results of these experiments revealed the origin of the nitrogen atoms of vitamin B12, and allowed the 15N-NMR signals to be assigned.  相似文献   

2.
The determination of backbone conformations in powdered peptides using 13C and 15N shift tensor information is explored. The 13C and 15N principal shift values in natural abundance 13C and 15N melanostatin (L-Pro-L-Leu-Gly amide) are measured using the FIREMAT technique. Furthermore, the orientation of the C-N bond in the 13C shift principal axis system for the backbone carbons is obtained from the presence of the 13C-14N dipolar coupling. The Ramachandran angles for the title compound are obtained from solid-state NMR data by comparing the experimentally determined shift tensor information to systematic theoretical shielding calculations on N-formyl-L-amino acid-amide models. The effects of geometry optimization and neglect of intermolecular interactions on the theoretical shielding values in the model compounds are investigated. The sets of NMR derived Ramachandran angles are assembled in a set of test structures that are compared to the available single-crystal X-ray structure. Shift tensor calculations on the test structures and the X-ray structure are used to further assess the importance of intermolecular interactions when the shift tensor is used as a structural probe in powdered peptides.  相似文献   

3.
The electronic ground states of the bacteriochlorophyll a type B800 and type B850 in the light-harvesting 2 complex of Rhodopseudomonas acidophila strain 10050 have been characterized by magic angle spinning (MAS) dipolar (13)C-(13)C correlation NMR spectroscopy. Uniformly [(13)C,(15)N] enriched light-harvesting 2 (LH2) complexes were prepared biosynthetically, while [(13)C,(15)N]-B800 LH2 complexes were obtained after reconstitution of apoprotein with uniformly [(13)C,(15)N]-enriched bacteriochlorophyll cofactors. Extensive sets of isotropic (13)C NMR chemical shifts were obtained for each bacteriochlorin ring species in the LH2 protein. (13)C isotropic shifts in the protein have been compared to the corresponding shifts of monomeric BChl a dissolved in acetone-d(6). Density functional theory calculations were performed to estimate ring current effects induced by adjacent cofactors. By correction for the ring current shifts, the (13)C shift effects due to the interactions with the protein matrix were resolved. The chemical shift changes provide a clear evidence for a global electronic effect on the B800 and B850 macrocycles, which is attributed to the dielectrics of the protein environment, in contrast with local effects due to interaction with specific amino acid residues. Considerable shifts of -6.2 < Deltasigma < +5.8 ppm are detected for (13)C nuclei in both the B800 and the B850 bacteriochlorin rings. Because the shift effects for the B800 and B850 are similar, the polarization of the electronic ground states induced by the protein environment is comparable for both cofactors and corresponds with a red shift of approximately 30 nm relative to the monomeric BChl dissolved in acetone-d(6). The electronic coupling between the B850 cofactors due to macrocycle overlap is the predominant mechanism behind the additional red shift in the B850.  相似文献   

4.
We have previously reported the use of a 13C tag at the C2 of 15N-multilabeled purine nucleosides to distinguish the adjacent-labeled 15N atoms from those in an untagged nucleoside. We now introduce the use of an indirect tag at the C8 of 15N7-labeled purine nucleosides. This tag allows unambiguous differentiation between a pair of 15N7-labeled purines in which only one is 13C8 labeled. Although the very small C8-N7 coupling (<1 Hz) precludes its direct detection in 1D 15N spectra, 2D 1H-15N NMR experiments display the large C8-H8 coupling (>200 Hz) because H8 is coupled to both N7 and C8. The 13C8 atom is introduced by means of a ring closure of the exocyclic amino groups of a pyrimidinone using [13C]sodium ethyl xanthate. Here, we present methods for the syntheses of [8-13C-1,7,NH2-15N3]adenosine, -guanosine, and their deoxy analogues.  相似文献   

5.
The REDOR and CPMAS techniques are applied for measuring 13C-15N dipolar coupling constants in glycine. It is shown that the selective CP or SPECIFIC CP technique removes the coherent evolution of the spin system under homonuclear 13C-13C J couplings. While the large coupling constant (approximately 900 Hz) is readily determined because of the presence of large oscillations in the CPMAS dynamics, their absence precludes the measurement of the small coupling constant (approximately 200 Hz). The experimental results and numerical simulations demonstrate that the determination of 13C-15N coupling constants of medium size (<1 kHz) by the CPMAS technique is mainly limited by the strength of the 1H decoupling field and the size of the 13C and 15N chemical shift anisotropies.  相似文献   

6.
We describe a magic-angle spinning NMR experiment for selective (13)C-(15)N distance measurements in uniformly (13)C,(15)N-labeled solids, where multiple (13)C-(15)N and (13)C-(13)C interactions complicate the accurate measurement of structurally interesting, weak (13)C-(15)N dipolar couplings. The new experiment, termed FSR (frequency selective REDOR), combines the REDOR pulse sequence with a frequency selective spin-echo to recouple a single (13)C-(15)N dipolar interaction in a multiple spin system. Concurrently the remaining (13)C-(15)N dipolar couplings and all (13)C-(13)C scalar couplings to the selected (13)C are suppressed. The (13)C-(15)N coupling of interest is extracted by a least-squares fit of the experimentally observed modulation of the (13)C spin-echo intensity to the analytical expression describing the dipolar dephasing in an isolated heteronuclear spin pair under conventional REDOR. The experiment is demonstrated in three uniformly (13)C,(15)N-labeled model systems: asparagine, N-acetyl-L-Val-L-Leu and N-formyl-L-Met-L-Leu-L-Phe; in N-formyl-[U-(13)C,(15)N]L-Met-L-Leu-L-Phe we have determined a total of 16 internuclear distances in the 2.5-6 A range.  相似文献   

7.
Ribonuclease T1 was biosynthesized, with all four prolines (13)C-labeled in the peptide C[double bond]O bond, using a proline auxotrophic yeast strain of Saccharomyces cerevisiae. The (13)C- and (12)C-proline isotopomers of ribonuclease T1 were investigated by infrared spectroscopy in the thermally unfolded and natively folded state at 80 and 20 degrees C, respectively. In the thermally unfolded state, both proteins established almost indistinguishable spectral features in the secondary structure sensitive amide I region. In contrast, the spectra measured at 20 degrees C revealed substantial qualitative and quantitative differences, though parallel analysis by circular dichroism suggested identical native folds for both isotopomers. Major spectral differences in the infrared spectra were detected at 1626 and 1679 cm(-1), which are diagnostic marker bands for antiparallel beta-sheets in ribonuclease T1 and at 1645 cm(-1), a region that is characteristic for the infrared absorption of irregular structures. Starting with the known three-dimensional structure of ribonuclease T1, the observed effects of the isotope labeling are discussed on the basis of transition dipole coupling between the (12)C[double bond]O and (13)C[double bond]O groups. The experimental results were confirmed by transition dipole coupling calculations of the amide I manifold of the labeled and unlabeled variant.  相似文献   

8.
Recently the amide-oxygen has been suggested to participate in the formation of the corrin ring of vitamin B12. To confirm this hypothesis, 17O-labeled aminolevulinic acid (ALA) was prepared and administered to Propionibacterium shermanii. The isolated vitamin B12 showed only broad 17O signals in the oxygen-17 nuclear magnetic resonance (17O-NMR) spectrum. However, distinct isotope-shifted peaks were observed in the 13C-NMR spectrum of vitamin B12 isolated after incorporation of [1-13C:1,4-18O2]ALA. Of these shifted peaks, one peak (C27) showed very low intensity. This indicates that dilution of 18O occurred at the acetyl chain of the A ring of vitamin B12. This result supports the assumption that the lactone formation of the A ring promotes the ring contraction, as proposed by Eschenmoser.  相似文献   

9.
Two general methods for the selective incorporation of an (15)N-label in the azole ring of tetrazolo[1,5-b][1,2,4]triazines and tetrazolo[1,5-a]pyrimidines were developed. The first approach included treatment of azinylhydrazides with (15)N-labeled nitrous acid, and the second approach was based on fusion of the azine ring to [2-(15)N]-5-aminotetrazole. The synthesized compounds were studied by (1)H, (13)C, and (15)N NMR spectroscopy in both DMSO and TFA solution, in which the azide-tetrazole equilibrium is shifted to tetrazole and azide forms, respectively. Incorporation of the (15)N-label led to the appearance of (13)C-(15)N J coupling constants (J(CN)), which can be measured easily using either 1D (13)C spectra with selective (15)N decoupling or with amplitude modulated 1D (13)C spin-echo experiments with selective inversion of the (15)N nuclei. The observed J(CN) patterns permit unambiguous determination of the type of fusion between the azole and azine rings in tetrazolo[1,5-b][1,2,4]triazine derivatives. Joint analysis of J(CN) patterns and (15)N chemical shifts was found to be the most efficient way to study the azido-tetrazole equilibrium.  相似文献   

10.
A hairpin model of the group I intron P5b loop was synthesized with [8-13C-7-15N]-guanosine in the GG.UU metal binding site, [7-15N]-guanosine at a nonbinding site, and [3-15N]-uridine. 15N NMR showed specific binding for Co(NH3)63+ and K+, but not for Zn2+, Cd2+, or Mg2+.  相似文献   

11.
It has been suggested that astaxanthin (3,3'-dihydroxy-beta,beta-carotene-4,4'-dione) in the carotenoprotein alpha-crustacyanin occurs in the diprotonated form. As a model system for protonated astaxanthin in [small alpha]-crustacyanin the reactions of canthaxanthin ([small beta],[small beta]-carotene-4,4[prime or minute]-dione) with Bronsted acids (CF(3)COOH and CF(3)SO(3)H) and the Lewis acid BF(3)-etherate have been investigated. Structures of C-5 protonated, C-7 protonated, enolised O-4 protonated and O-4,4[prime or minute], C-7 triprotonated canthaxanthin have been established by VIS-NIR and NMR spectroscopy. The charge distribution in the cations has been considered by comparison of the (13)C chemical shift difference relative to neutral relevant carotenoid models. The experimental evidence for protonated canthaxanthins differs significantly from previous AM1 calculations. Experimental data for O-4,4[prime or minute], C-7 triprotonated canthaxanthin relative to C-7 protonated canthaxanthin is considered a relevant model for O-4,4[prime or minute] diprotonated canthaxanthin, in comparison with neutral canthaxanthin. The positive charge was mainly located at C-6/6[prime or minute][dbl greater-than] C-8/8[prime or minute] > C-10/10[prime or minute] > C-12/12[prime or minute] > C-14/14[prime or minute][similar] C-15/15[prime or minute] in the polyene chain. Moreover, it was inferred that only 14% of the positive charge is delocalised to the polyene chain, the remaining charge must therefore be located at the protonated carbonyl moiety. The results are discussed in relation to previous solid state NMR studies of (13)C labelled astaxanthin in [small alpha]-crustacyanin and recent X-ray analysis of [small beta]-crustacyanin.  相似文献   

12.
Carbon-13 shieldings and one-bond 13C? H coupling constants of bicyclo[2.1.1]hexane, bicyclo[2.1.1]hex-2-ene, tricyclo[3.1.1.02,4]heptane and benzvalene are presented and compared to the data of related compounds. If a bicyclo[3.1.0]hexane system is part of a rigid skeleton, the cyclopropane ring exerts specific γ substituent effects of two kinds. In the case of the bicyclohexane boat form an upfield shift of the C-3 signal is observed and in the case of the chair form a downfield shift of 15–20 ppm. Compared to the corresponding cyclopentanes the double bond in strained cyclopentenes causes downfield shifts of the C-4 absorption. This effect increases with increasing strain, reaching a 45.9 ppm maximum in benzvalene. Hence it is the only known bicyclo[1.1.0]butane having a reversed order of carbon shieldings. The downfield shifts are explained by means of simple orbital interaction schemes.  相似文献   

13.
A decamer duplex model of Domain II of the hammerhead ribozyme was synthesized with [8-13C-1,7,NH2-15N3]-guanosine at the known metal binding site, G10.1 and, for comparison, [2-13C-1,7,NH2-15N3]-guanosine at G16.2. The 15N NMR chemical shifts of the labeled N7s monitored during addition of Mg2+, Cd2+, and Zn2+ showed the same preference for binding at G10.1 over G16.2 for each metal. These results demonstrate that 15N labeling can be used to evaluate the binding of different metals, including Mg2+, to a given nitrogen, as well as to compare the binding potential of different sites.  相似文献   

14.
Changes of the interplanar angle in [2.2]metacyclophanes can be achieved by increasing the steric strain between the axial position at C-1 and H-8 as well as between the equatorial position and H-14 and H-12 resp.: These non bonded interactions are relieved by changing the torsional and bond angles with consequent rotation of one aromatic ring about an axis bisecting C-1 and C-10. This has been demonstrated with the aid of acetals4–10 derived from 1,10-dioxo-[2.2]-metacyclophane (13). The conformational changes were deduced from the chemical shift difference between the intraanular protons 8 and 16 in the1H-NMR spectrum as well as from an increase in allylic coupling of the axial proton at C-2 with H-8. For these investigations the1H-NMR correlation of the protons of the bridge was indispensable. This problem was solved by deuterium labelling experiments and application of the INDOR-sweep technique on theABX-system of (e,e)-dihydroxy-[2.2]metacyclophane (2).  相似文献   

15.
A new magic-angle spinning NMR method for measuring internuclear distances between a 13C-labeled site and amide protons is described. The magnetization of the protons evolves under homonuclear decoupling and the recoupled 13C-1H dipolar interaction, which provides simple spin-pair REDOR curves if only one 13C-labeled site is present. The modulation of the amide proton HN is detected via short 1H-15N cross polarization followed by 15N detection. The method is demonstrated on two specifically 13C- and 15N-labeled peptides, with 13C-HN distances from 2.2 to ca. 6 A. This technique promises to be particularly useful for measuring distances between 13C=O and H-15N groups, to identify hydrogen bonds in peptides and proteins.  相似文献   

16.
The measurement of amide nitrogen 14N quadrupolar coupling by two-dimensional 14N/13C correlation experiment is presented with a natural abundant polypeptide. Directly bonded 14N/13C pairs are correlated through J and residual dipolar coupling under magic-angle spinning using a HMQC-type pulse sequence. The 14N quadrupolar coupling is measured from the isotropic second-order quadrupolar shift obtained by comparing the 14N peak positions with the 15N chemical shifts. The high spectral resolution and sensitivity through 13C detection make this method applicable to many organic, inorganic, and biological molecules for the measurement and the use of 14N quadrupolar coupling as a probe for molecular structure and dynamics.  相似文献   

17.
The rotational resonance width (R2W) experiment is a constant-time version of the rotational resonance (R2) experiment, in which the magnetization exchange is measured as a function of sample spinning frequency rather than the mixing time. The significant advantage of this experiment over conventional R2 is that both the dipolar coupling and the relaxation parameters can be independently and unambiguously extracted from the magnetization exchange profile. In this paper, we combine R2W with two-dimensional 13C-13C chemical shift correlation spectroscopy and demonstrate the utility of this technique for the site-specific measurement of multiple 13C-13C distances in uniformly labeled solids. The dipolar truncation effects, usually associated with distance measurements in uniformly labeled solids, are considerably attenuated in R2W experiments. Thus, R2W experiments are applicable to uniformly labeled biological systems. To validate this statement, multiple 13C-13C distances (in the range of 3-6 A) were determined in N-acetyl-[U-13C,15N]l-Val-l-Leu with an average precision of +/-0.5 A. Furthermore, the distance constraints extracted using a two-spin model agree well with the X-ray crystallographic data.  相似文献   

18.
The 6Li,15N coupling constants of lithium amide dimers and their mixed complexes with n-butyllithium, formed from five different chiral amines derived from (S)-[15N]phenylalanine, were determined in diethyl ether (Et2O), tetrahydrofuran (THF) and toluene. Results of NMR spectroscopy studies of these complexes show a clear difference in 6Li,15N coupling constants between di-, tri- and tetracoordinated lithium atoms. The lithium amide dimers with a chelating ether group exhibit 6Li,15N coupling constants of approximately 3.8 and approximately 5.5 Hz for the tetracoordinated and tricoordinated lithium atoms, respectively. The lithium amide dimers with a chelating thioether group show distinctly larger 6Li,15N coupling constants of approximately 4.4 Hz for the tetracoordinated lithium atoms, and the tricoordinated lithium atoms have smaller 6Li,15N coupling constants, approximately 4.9 Hz, than their ether analogues. In diethyl ether and tetrahydrofuran, mixed dimeric complexes between the lithium amides and n-butyllithium are formed. The tetracoordinated lithium atoms of these complexes have 6Li,15N coupling constants of approximately 4.0 Hz, and the 6Li,15N coupling constants of the tricoordinated lithium atoms differ somewhat, depending on whether the chelating group is an ether or a thioether; approximately 5.1 and approximately 4.6 Hz, respectively. In toluene, mixed trimeric complexes are formed from two lithium amide moieties and one n-butyllithium. In these trimers, two lithium atoms are tricoordinated with 6Li,15N coupling constants of approximately 4.6 Hz and one lithium is dicoordinated with 6Li,15N coupling constants of approximately 6.5 Hz.  相似文献   

19.
Low-temperature 15N and 13C CP/MAS (cross-polarization/magic angle spinning) NMR has been used to analyze BChl-histidine interactions and the electronic structure of histidine residues in the light-harvesting complex II (LH2) of Rhodopseudomonas acidophila. The histidines were selectively labeled at both or one of the two nitrogen sites of the imidazole ring. The resonances of histidine nitrogens that are interacting with B850 BChl a have been assigned. Specific 15N labeling confirmed that it is the tau-nitrogen of histidines which is ligated to Mg2+ of B850 BChl molecules (beta-His30, alpha-His31). The pi-nitrogens of these Mg2+-bound histidines were found to be protonated and may be involved in hydrogen bond interactions. Comparison of the 2-D MAS NMR homonuclear (13C-13C) dipolar correlation spectrum of [13C6,15N3]-histidines in the LH2 complex with model systems in the solid state reveals two different classes of electronic structures from the histidines in the LH2. In terms of the 13C isotropic shifts, one corresponds to the neutral form of histidine and the other resembles a positively charged histidine species. 15N-13C double-CP/MAS NMR data provide evidence that the electronic structure of the histidines in the neutral BChl a/His complexes resembles the positive charge character form. While the Mg...15N isotropic shift confirms a partial positive charge transfer, its anisotropy is essentially of the lone pair type. This provides evidence that the hybridization structure corresponding to the neutral form of the imidazole is capable of "buffering" a significant amount of positive charge.  相似文献   

20.
Several new 1,2,3-triazolo[4,5-b][1,4]diazepines were prepared starting from 1-benzyl-1 and 1-phenethyl-4,5-diamino-1,2,3-triazole 2 (Scheme 1), by condensation reactions with β-diketones (Scheme 2), β-ketoesters (Scheme 3), and diethyl malonates (Scheme 4). In the first case we obtained compounds 3 and 4 with basic properties, while the ester function condensations gave cyclic amide derivatives 7, 8, 10, 12 and 13 with acid properties. Some N-methyl derivatives 11, 14 and 15 were obtained from the cyclic amide compounds. Most of compounds were tested for their ability to displace [3H]flunitrazepam from bovine brain membranes but no compound showed benzodiazepine receptor binding affinity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号