首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 16 毫秒
1.
Abstract— The population and photosynthetic responses of a microscopic green alga ( Selenastrum capricornutum ) to realistic levels of UV radiation (UVA and UVB) were assessed in natural lake waters of different dissolved organic carbon (DOC) concentration. Specific growth rates and photosynthetic competence (as reflected by Fv/Fm [measure of maximal quantum efficiency of photosystem II] and t1/2 [estimate of electrons transported to the plastoquinone pool] measured by in vivo variable chlorophyll a fluorescence) were compared between two exposure levels of UVR and two concentrations of DOC (2.5 mg C L−1 7.7 mg C L−1). Exposure periods of 6–9 days (five to nine generations) were used. Exposure to UVA primarily affected the efficiency of photosystem II, as evidenced by significant decreases of Fv/Fm but not growth rates or t1/2 Exposure to UVB, in the presence of UVA, did not cause significant additional decreases of Fv/Fm but did diminish growth rates. In the low DOC water, t1/2 was also diminished, suggesting different proximate sites of action from those for UVA. The high DOC water decreased the effective exposure to both UVA and UVB and diminished the negative impact of UV radiation on the cells, but the apparent protection was not explicable solely by the shading action of the DOC. Control values for Fv/Fm, growth rates and t1/2 were all lower in the high DOC water, suggesting a negative side effect to the apparent protective action of the DOC against UVB.  相似文献   

2.
Abstract— The Living Skin Equivalent (LSE™) is an organotypic coculture composed of human dermal fibroblasts interspersed in a collagen-containing matrix and overlaid with human keratinocytes forming a stratified epidermis. The LSE has a dry, air-exposed epidermal surface suitable for the application of oils, creams and emulsions. These features suggested its feasibility as an in vitro skin model for studying the protective effects of sunscreens. Using the thiazolyl blue (MTT) conversion assay as a measure of mitochondrial function, the extent of cytotoxicity induced by various doses of UV-R (280–400 nm) or UV-A (320–400 nm) was evaluated in the LSE. The doses of UV radiation that caused 50% reductions in MTT conversion (UV-R50 or UV-A50) in different lots of LSE were 0.053 ± 0.021 J/cm2 (n = 29) and 11.6 ± 4.9 J/cm2 (n = 17) for UV-R and UV-A, respectively. The protective effects of an 8% homosylate standard and of five UV-A sunscreens, topically applied to the LSE, were determined and compared with their reported protection factors in human skin. Morphological changes and the release of proinflammatory mediators (interleukin-1-α, tumor necrosis factor-α and prostaglandin E2) implicated in UV-induced erythema were also demonstrated in the LSE exposed to UV-A or UV-B. The data suggest that the LSE can be used for studying the effects of U V radiation on skin and may have utility for assessing the efficacy of certain sunscreens against UV-B and UV-A.  相似文献   

3.
Abstract—Plant response to UV-B (0.290–0.320 μm) irradiation in controlled environments has been difficult to assess, possibly because plants also respond to UV-A (0.320–0.400 μm) and visible radiation. Photosynthetic dysfunction is often reported, but effects on photosynthetic pigments have been equivocal. Because UV-A/blue radiation is involved in pigment synthesis, the experimental UV-A irradiation was controlled and this study was conducted under high ambient photosynthetic photon flux (mid-day PPF > 1400 pmol m –2 s–1). Two biologically effective UV-B irradiances (10.7 and 14.1 kJ m-2 day-I) were utilized and the UV-A irradiances were matched in controls (˜5 and 9 kJ m-2 day-1). Normal and two mutant pigment isolines (chlorophyll-deficient, flavonoid-deficient) of soybean cultivar Clark were utilized for comparisons. Many pigmedgrowth variables exhibited a statistical interaction between spectral quality and quantity. UV-A/blue photoregulation was demonstrated in the UV-A controls. The pigmentlgrowth pattern observed at the lower UV-B irradiance was interpreted as a photosystem II response similar to shade adaptation, suggesting phytochrome involvement in UV-B irradiation responses. On the other hand, two variables most commonly observed to manifest UV-B-induced effects—decreased photosynthesis and increased leaf flavonoid content—exhibited no interactions due to UV exposure or spectral quality. In general, the observed response patterns indicated either moderation of UV-B-induced responses by UV-A/blue radiation, or coaction between them, and provides an explanation for the common failure to demonstrate fluence-related responses in UV-B experiments.  相似文献   

4.
Abstract— At the high mountain station Jungfraujoch (3576 m), the maximum daily totals for erythemal dose (GER), UV-A radiation (GUVA) and global radiation (G) are 29 Sunburn Units d−1, l.7 MJ m−2d−1 and 37 MJ m−2 d−1. The maximum instantaneous values at solar noon in midsummer are 4.2 Sunburn Unit h−1, 53 W m−2 and 1110 W m−2. A significantly nonlinear relation between GER and G results from the influence of the irradiated ozone mass on the UV-B erythemal dose. In contrast, GUVA and G are linearly proportional, which can be seen from the diurnal and seasonal courses of the ratios GER/G and GUVA/G AND from their dependence on the optical air mass. UV-A radiation flux is less attenuated by cloudiness than is global radiation. This effect is masked for the erythemal dose by variations in the ozone concentration. Due to seasonal ozone layer thickness and effective pathlength variations, the ratio GER/G shows a significant asymmetry. At the autumn equinox it is about 16% higher than at the spring equinox.  相似文献   

5.
Penetration of ultraviolet radiation in the marine environment. A review   总被引:1,自引:0,他引:1  
UV radiation (UVR) is a significant ecological factor in the marine environment that can have important effects on planktonic organisms and dissolved organic matter (DOM). The penetration of UVR into the water column is likely to change in the near future due to interactions between global warming and ozone depletion. In this study we report underwater instruments employed for the measurement of UVR and we review data dealing with the depth of UVR penetration in different oceanic areas including the open ocean, Antarctic waters and coastal waters. We provide the 10% irradiance depth (Z10%) for UV-A and UV-B as well as for DNA damage effective dose (DNA), which we calculated from the values of diffuse attenuation coefficients or vertical profiles reported in the literature. We observe a clear distinction between open ocean (high Z10%, no variation in the ratio UV-B/UV-A), Antarctic waters (increase in the ratio UV-B/UV-A during ozone hole conditions) and coastal waters (low Z10%, no variation in the ratio UV-B/UV-A). These variations in the penetration of UVR could lead to differences in the relative importance of photobiological/photochemical processes. We also compare in this study the penetration of UV-B (unweighted and weighted by the Setlow action spectrum) and DNA damage effective dose.  相似文献   

6.
Ultraviolet A radiation participates in cytotoxicity and carcinogenesis of the skin by a mechanism involving the generation of reactive oxygen species. Endogenous antiradical defense systems utilize metalloenzymes including Se-dependent glutathione peroxidase and Cu and Zn superoxide dismutase. The aim of the present work was to determine the protective effect of two trace elements, Se and Zn, on cultured human diploid fibroblasts exposed to UV-A radiation (broad-spectrum source with a maximum intensity at 375 nm). Selenium in the culture medium (0.1 mg/L) in the form of sodium selenite increased the synthesis and activity of glutathione peroxidase by 60.5% in the absence of exposure to UV-A radiation and by 35% after irradiation with 5 J/cm2 ( P = 0.043). The presence of this element significantly increased the survival of UV-A-irradiated fibroblasts ( P < 0.0001). This confirms the essential role of Se in the detoxifying activity of the enzyme. In addition, thiobarbituric acid-reacting substances (TBAR), which are lipid peroxidation markers, decreased in the presence of exogenous Se:—19% and -22% without irradiation and after irradiation with 5 J/cm2 ( P = 0.056). When Zn was added at the dose of 6.5 mg/L as ZnCl2, fibroblasts subjected to oxidizing stress induced by UV-A were protected from cytotoxicity ( P <0.0001). The TBAR production decreased significantly: -33% without irradiation and -34% after irradiation with 5 J/cm2 ( P = 0.008). Superoxide dismutase activity, however, decreased after supplementing with Zn: - 26% without irradiation and - 20% after UV-A irradiation ( P = 0.017). The antioxidant properties of Zn are thus apparently independent of superoxide dismutase activity.  相似文献   

7.
SPECTRAL QUALITY OF TWO FLUORESCENT UV SOURCES DURING LONG-TERM USE   总被引:1,自引:0,他引:1  
The characteristics of a fluorescent ultraviolet (UV) lamp (UVB-313), UV-B transmitting cellulose diacetate (CA) and UV-B absorbing polyester (PE) films were determined during actual use. Although lamp emission was stable between 70 and 386 h of burn time (longer times were not investigated), the absorbance of UV-B and UV-A radiation by CA and PE films, respectively, increased with time when wrapped around lamps. As a result, the irradiance of lamp/filter combinations decreased steadily (even when CA films were presolarized for 10 h), making it necessary to compensate by adjusting the height of the lamp bank or by changing filters frequently. Note that corrective action is required for UV-A controls (PE films) as well as UV-B experimental treatments (CA films). Changing filters is preferable, since aging of CA filters caused shifts in the ratio of UV-B to UV-A. However, in spite of these shifts, the normalized spectrum of weighted biologically effective UV-B radiation did not change to a large extent.  相似文献   

8.
Reductions in leaf growth are a commonly observed response to ultraviolet radiation, but the underlying mechanisms remain poorly defined. This study examined the response of leaves exposed to a UV environment across a range of organizational scales, including leaf expansion rate, epidermal cell size and number, biomechanical properties, leaf–water relations and activity of cell-wall peroxidases. Two experimental approaches were used; Lettuce ( Lactuca sativa L.) plants were propagated under (a) supplementary UV-B (9 kJ m−2 day−1) in controlled environment (CE) conditions, and (b) field conditions, where plants were placed under three horticultural films with differing UV transmissions. In both experiments, UV-B caused the greatest reductions in leaf expansion and final leaf size, with some reductions attributable to UV-A wavelengths. In supplementary UV-B conditions, adaxial cell size was reduced, while in field plants, both cell size and cell number were lower in an increased UV environment, as was the case with abaxial cells in CE plants. Although leaf turgor and leaf extensibility were not affected by UV wavelengths, breaking strain of leaf tissue was decreased under supplementary UV-B. Cell-wall peroxidase activity was increased in both supplementary UV conditions and in the field, where only a zero UV environment showed no upregulation of cell-wall peroxidase.  相似文献   

9.
The increase in UV-B radiation reaching the earth's surface has prompted extensive studies on the effects of UV-B on plants. However, most of these studies have not addressed the close characteristics related to future survival of plant populations. The purpose of this study was to investigate the effects of UV-B radiation on reactive oxygen species (ROS) accumulation and antioxidant defense system in relation to germination, tube length and viability of maize pollen. Our results indicate that increased UV-B radiation decreased the pollen germination rate and tube length in vitro and also its fertilization ability in the field. Production of O2•− and H2O2 increased by UV-B radiation treatment, and their continuous accumulation resulted in lipid peroxidization. The activities of superoxide dismutase, catalase, peroxidase and DPPH-radical scavenging were decreased by increased UV-B radiation. The increased ROS and lipid peroxidization, and decreased activities of the antioxidants may be attributed to the effects of UV-B radiation on pollen germination, tube growth and fertilization ability.  相似文献   

10.
Bai YC  Wu FC  Liu CQ  Li W  Guo JY  Fu PQ  Xing BS  Zheng J 《Analytica chimica acta》2008,616(1):115-121
We describe an ultraviolet (UV) absorbance titration method that can be used to determine complexing capacities (CL) and conditional stability constants (log K) of humic substances (HSs) with metal ions such as Cu(II) and Hg(II). Two fulvic acids (FA) and one humic acid (HA) were used for this study. UV absorbance of HSs gradually increased with the addition of Cu(II) or Hg(II) after blank correction, and these increases followed the theoretical 1:1 (ligand:metal ion) binding model. The results from the absorbance titration calculation for HSs with Cu(II) and Hg(II) compared well with those from fluorescence quenching titration. The titration of the model compound l-tyrosine with Cu(II) proved the validity of this method, and the K and CL were within 2.3% and 7.4% of the fluorescence quenching titration. The results suggest that the UV absorbance titration can be used to study the binding capacities of HSs and/or dissolved organic matter (DOM) with trace metals. The advantages and disadvantages of the absorbance titration method were also discussed.  相似文献   

11.
Abstract— Visible radiation can substantially influence the degree to which plant photosynthesis is inhibited by UV-B radiation. This study was designed to separate the immediate effects of visible radiation on UV-B photosynthetic inhibition from the indirect influence of visible irradiation on morphological and physiological properties of leaves during leaf development. Soybean plants were pretreated in growth chambers with either high or low visible irradiance (750 and 70 μmol m-2s-1 quantum flux in the 400–700 nm waveband, respectively) during the development of leaves used subsequently for UV irradiation. Test leaves still attached to the plant were exposed to 5 h of polychromatic UV-B irradiation and the photosynthetic capacity (net CO2 exchange) was determined before and after the UV irradiation. During the UV irradiation, plants from both pretreatment groups received either high or low visible flux. Development of leaves in the high visible flux pretreatment conditions resulted in thicker leaves, higher chlorophyll a/b ratios, more UV-absorbing pigments, and reduced sensitivity to the UV-B irradiation. However, higher visible flux during the UV-B irradiation resulted in greater depression of photosynthesis by the UV-B irradiation. The relative magnitude of photosynthetic depression under these treatment combinations was the same when photosynthesis was measured under either light-limited or light-saturated conditions.  相似文献   

12.
Three macroalgal species, Fucus vesiculosus, Laminaria saccharina and Ulva lactuca were exposed to natural daylight in UV-transparent and UV-non-transparent Plexiglas vessels at different water depths. Uptake of 15NH4+ and 15NO3 was measured at different light intensities. In general, uptake rates in August surpassed those in May 1987 and Ulva assimilated significantly more nitrogen than Fucus and Laminaria. A negative influence of ambient solar UV radiation on nitrogen uptake was dound in Fucus and Ulva. Additionally, the impact of UV of different wave bands, using cut-off filters (WG 295, WG 305 and WG 320) and special UV-A and UV-B lamps, on pigments and 15N ammonium assimilation by several macroalgae was studied under controlled laboratory conditions. UV-B irradiation of shorter wave bands led to a reduction in the main pigments of Fucus except antheraxanthin and those of Ulva except lutein and violaxanthin. Uptake of 15N-ammonium by Fucus and Ulva was reduced after UV-B radiation whereas an increase was observed after UV-A irradiance in Ulva. Ammonia utilization by Halidrys was more damaged by UV-A than UV-B. The impact of UV radiation on the labelling of free amino acids and the pattern of pool sizes varied with the species and the UV wave bands. A marked reduction in 15N incorporation into the amino acids of Plocamium was found after UV-B exposure. The 15N labelling of the amino acids of Halidrys and Rhodomela was less affected. Results are discussed with reference to photoinhibitory effects on the enzymes of the nitrogen metabolism.  相似文献   

13.
Laboratory tests confirmed a negative and variable response of the following four species to artificial UV radiation: Cypridopsis vidua, an ostracode; Chironomus riparius, a midge larvae; Hyalella azteca, an amphipod; and Daphnia magna, a daphnid. Severe damage occurred at UV-B irradiance ranging from 50 to 80% of incident summer values. Under constant exposure to UV and photosynthetically active radiation (PAR) the acute lethal response was recorded at 0.3, 0.8, 0.8 and 4.9 W m-2 UV-B for D. magna, H. azteca, C. riparius and C. vidua, respectively. Sublethal UV-B damage to invertebrates included impaired movement, partial paralysis, changes in pigmentation and altered water balance (bloating). A series of UV-B, UV-A and PAR treatments, applied separately and in combination, revealed a positive role for both UV-A and PAR in slowing down UV-B damage. Mean lethal concentration values of the species typically more tolerant to UV and PAR (Cypridopsis, Chironomus) decreased conspicuously when both UV-A and PAR were eliminated. For UV-B-sensitive species (Hyalella, Daphnia) these differences were notably smaller. We suggest that this gradation of sensitivity among the tested species demonstrates potential differences in repairing mechanisms which seem to work more efficiently for ostracodes and chironomids than for amphipods and daphnids. Manipulations with a cellulose acetate filter showed that lower range UV-B (280-290 nm), produced by FS-40 lamps, may cause excessive UV damage to invertebrates.  相似文献   

14.
Plectonema boryanum UTEX 485 cells were grown at 29 degrees C and 150 mumol m-2 s-1 photosynthetically active radiation (PAR) and exposed to PAR combined with ultraviolet-A radiation (UV-A) at 15 degrees C. This induced a time-dependent inhibition of photosystem II (PSII) photochemistry measured as a decrease of the chlorophyll a fluorescence ratio, Fv/Fm, to 50% after 2 h of UV-A treatment compared to nontreated control cells. Exposure of the same cells to PAR combined with UV-A + ultraviolet-B radiation (UV-B) caused only a 30% inhibition of PSII photochemistry relative to nontreated cells. In contrast, UV-A and UV-A + UV-B irradiation of cells cultured at 15 degrees C and 150 mumol m-2 s-1 had minimal effects on the Fv/Fm values. However, cells grown at 15 degrees C and lower PAR irradiance (6 mumol m-2 s-1) exhibited similar inhibition patterns of PSII photochemistry as control cells. The decreased sensitivity of PSII photochemistry of P. boryanum grown at 15 degrees C and 150 mumol m-2 s-1 to subsequent exposure to UV radiation relative to either control cells or cells grown at low temperature but low irradiance was correlated with the following: (1) a reduced efficiency of energy transfer to PSII reaction centers; (2) higher levels of a carotenoid tentatively identified as myxoxanthophyll; (3) the accumulation of scytonemin and mycosporine amino acids; and (4) the accumulation of ATP-dependent caseinolytic proteases. Thus, acclimation of P. boryanum at low temperature and moderate irradiance appears to confer significant resistance to UV-induced photoinhibition of PSII. The role of excitation pressure in the induction of this resistance to UV radiation is discussed.  相似文献   

15.
Abstract— Ultraviolet-B (290–320 nm) radiation is known to impair the antigen-presenting cell (APC) function of Langerhans cells (LC), skin-specific members of the dendritic cell (DC) family. We sought to address mechanisms of this effect, focusing on the role played by hydrogen peroxide. For this purpose, we used a newly established murine DC line, XS52, which resembles epidermal LC in several respects. The APC capacity of XS52 cells, using two different CD4* T cell clones as responders, was inhibited significantly (>50%) by exposure to UV radiation (unfiltered FS20 sunlamps) at relatively small fluences (50–100 J/m2). Ultraviolet radiation also inhibited growth factor-dependent proliferation of XS52 cells. On the other hand, cell surface phenotype was relatively well preserved after irradiation; expression levels of B7-1 and B7-2 were reduced slightly, while other molecules ( e.g. Ia, CD54, CD1 la and CD18) were not affected. With respect to the role played by hydrogen peroxide, pretreatment with purified catalase (900 U/mL) prevented UV-induced inhibition of APC function. Short-term exposure to 3 miM H202 or f-butyl H202 mimicked UV radiation by inhibiting APC function. Finally, intrinsic catalase activity was substantially lower in XS52 cells compared with Pam 212 keratinocytes. These results indicate that the generation of hydrogen peroxide alone is sufficient to produce some, but not all, of the deleterious effects of UV radiation on DC derived from the skin.  相似文献   

16.
The photoprotector role of pigment dispersion in the melanophores of the crab, Chasmagnathus granulata, against DNA and oxidative damages caused by UV-A and UV-B was investigated. Intact and eyestalkless crabs were used. In eyestalkless crabs, the dorsal epidermis of the cephalothorax (dispersed melanophores) and the epidermis of pereiopods (aggregated melanophores) were analyzed. Intact crabs showed only dispersed melanophores in the two epidermis. Antioxidant enzymes activity and lipoperoxidation content were analyzed after UV-A (2.5 J/cm2) or UV-B (8.6 J/cm2) irradiation. DNA damage was analyzed by single cell electrophoresis (comet) assay, after exposure to UV-B (8.6 J/cm2). UV-A radiation increased the glutatione-S-transferase activity in the pereiopods epidermis of eyestalkless crabs (P<0.05). UV-B radiation induced DNA damage in the dorsal epidermis of eyestalkless crabs (P<0.05). In pereiopod epidermis of eyestalkless crabs, there was no significant difference between control and UV-B-exposed crabs. In the pereiopods epidermis of eyestalkless, the control group showed higher scores of DNA damage and approximately 50% of cellular viability. Because in eyestalkless and irradiated crabs the cellular viability was approximately 5%, it was not possible to observe nuclei for determination of DNA damage. The findings show that melanophores can play a role in the defense against harmful effects of a momentary exposure to UV radiation.  相似文献   

17.
Ultraviolet-B (UV-B; 280-320 nm)-emitting lamps unavoidably emit ultraviolet-A (UV-A; 320-400 nm) and ultraviolet-C (UV-C; <280 nm) radiation. Short-wavelength-blocking filters are generally used to limit the wave bands of UV under investigation. The widespread use of such filters means that all exposures to UV-B radiation will have a significant UV-A component. Therefore, the physiological effects unique to UV-B exposure are difficult to clearly isolate. This study presents a method to remove the UV-A and UV-C "contamination" using a liquid potassium chromate (K(2)CrO(4)) filter, thus allowing more direct assessment of the effects of UV-B exposure. Cultures of the green marine alga Dunaliella tertiolecta were grown in the absence of UV radiation. Sunlamps supplied the UV radiation for a 24 h exposure (solar radiation was not used in this study). The UV radiation was filtered either by the standard method (i.e. cellulose acetate (CA) with polyester = Mylar controls) or by a liquid filter of potassium chromate. Photosynthetic responses were compared. Major decreases in the ratio of variable to maximal fluorescence in dark-adapted cells and photosynthetic capacity were observed in CA-filtered cultures, whereas no change was observed in cells exposed to the same UV-B flux with the UV-A removed by K(2)CrO(4). The use of a CA filter with a Mylar control does not link results unequivocally to UV-B radiation. Such results should be interpreted with caution.  相似文献   

18.
Abstract—There is evidence to indicate that an increased exposure to solar radiation in the UV-B region (specifically, 290–320 nm) may occur as a result of anthropogenic degradation of stratospheric ozone. The fact that present levels of solar UV radiation can detrimentally affect marine organisms led to experiments to quantify the impact of increased UV radiation upon a marine community. Two 720–l seawater chambers (continuous flow-through design) were exposed to simulated solar UV radiation. Fluorescent sunlamps filtered by a 290 nm cutoff filter (a 0.13 mm thickness of cellulose triacetate film) were used as the radiation source. Utilization of three different weighting factors for the spectral irradiances at the surface of the chambers yielded differences of 18%, 35% and 40% in biologically effective fluence rate between the two chambers. Analysis of attached forms of algae at various depths demonstrated that a surface exposure of 1.4W/m2 in the 290–315nm waveband as contrasted with the chamber receiving a surface exposure of 1.0W/m2 resulted in depressed Chl a concentrations, reduced biomass, increased autotrophic indices, and decreased community diversity. These results indicate a potential for adverse effects of increased solar UV-8 radiation: decreased community diversity, community structure shifts, and decreased productivity.  相似文献   

19.
The role of photosynthetically active radiation (400-700 nm) (PAR) in modifying plant sensitivity and photomorphogenic responses to ultraviolet-B (280-320 nm) (UV-B) radiation has been examined by a number of investigators, but few studies have been conducted on ultraviolet-A (320-400 nm) (UV-A), UV-B and PAR interactions. High ratios of PAR-UV-B and UV-A-UV-B have been found to be important in ameliorating UV-B damage in both terrestrial and aquatic plants. Growth chamber and greenhouse studies conducted at low PAR, low UV-A and high UV-B often show exaggerated UV-B damage. Spectral balance of PAR, UV-A and UV-B has also been shown to be important in determining plant sensitivity in field studies. In general, one observes a reduction in total biomass and plant height with decreasing PAR and increasing UV-B. The protective effects of high PAR against elevated UV-B may also be indirect, by increasing leaf thickness and the concentration of flavonoids and other phenolic compounds known to be important in UV screening. The quality of PAR is also important, with blue light, together with UV-A radiation, playing a key role in photorepair of DNA lesions. Further studies are needed to determine the interactions of UV-A, UV-B and PAR.  相似文献   

20.
Albino hairless mice (Skh: HR-1) exposed chronically to sub-erythemal doses of UV radiation display physical, visible and histological alterations. Using narrow bandwidth radiation covering the UV radiation spectrum from 280-380 nm, the wavelength dependence of these alterations was determined. The wavelength dependence spectra indicate that for all but one parameter measured (skin sagging), UV-B radiation is considerably more efficient than UV-A radiation in producing changes in the skin. However, in natural sunlight there is considerably more UV-A than UV-B radiation, providing the potential for UV-A to have a larger contribution to skin damage than UV-B. This argues in favor of using broad spectrum photoprotective agents to shield the skin adequately from UV-induced aging. The spectra were also used to develop potential associations among events by determining which events occur at similar wavelengths. There seems to be a correspondence between mouse visible skin wrinking (UV-B event) and two histological events: increase in glycosaminoglycans and alteration in collagen. There was no obvious correspondence among UV-A-induced events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号