首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Alzheimer’s disease is understood to be caused by amyloid fibrils and oligomers formed by aggregated amyloid-β (Aβ) peptides. This review article presents molecular dynamics (MD) simulation studies of Aβ peptides and Aβ fragments on their aggregation, aggregation inhibition, amyloid fibril conformations in equilibrium, and disruption of the amyloid fibril by ultrasonic wave and infrared laser irradiation. In the aggregation of Aβ, a β-hairpin structure promotes the formation of intermolecular β-sheet structures. Aβ peptides tend to exist at hydrophilic/hydrophobic interfaces and form more β-hairpin structures than in bulk water. These facts are the reasons why the aggregation is accelerated at the interface. We also explain how polyphenols, which are attracting attention as aggregation inhibitors of Aβ peptides, interact with Aβ. An MD simulation study of the Aβ amyloid fibrils in equilibrium is also presented: the Aβ amyloid fibril has a different structure at one end from that at the other end. The amyloid fibrils can be destroyed by ultrasonic wave and infrared laser irradiation. The molecular mechanisms of these amyloid fibril disruptions are also explained, particularly focusing on the function of water molecules. Finally, we discuss the prospects for developing treatments for Alzheimer’s disease using MD simulations.  相似文献   

2.
The identification of compounds which protect the double-membrane of mitochondrial organelles from disruption by toxic confomers of amyloid proteins may offer a therapeutic strategy to combat human neurodegenerative diseases. Here, we exploited an extract from the marine brown seaweed Padina pavonica (PPE) as a vital source of natural bioactive compounds to protect mitochondrial membranes against insult by oligomeric aggregates of the amyloidogenic proteins amyloid-β (Aβ), α-synuclein (α-syn) and tau, which are currently considered to be major targets for drug discovery in Alzheimer’s disease (AD) and Parkinson’s disease (PD). We show that PPE manifested a significant inhibitory effect against swelling of isolated mitochondria exposed to the amyloid oligomers, and attenuated the release of cytochrome c from the mitochondria. Using cardiolipin-enriched synthetic lipid membranes, we also show that dye leakage from fluorophore-loaded vesicles and formation of channel-like pores in planar bilayer membranes are largely prevented by incubating the oligomeric aggregates with PPE. Lastly, we demonstrate that PPE curtails the ability of Aβ42 and α-syn monomers to self-assemble into larger β-aggregate structures, as well as potently disrupts their respective amyloid fibrils. In conclusion, the mito-protective and anti-aggregator biological activities of Padina pavonica extract may be of therapeutic value in neurodegenerative proteinopathies, such as AD and PD.  相似文献   

3.
Oligomeric amyloid-β aggregates (AβOs) effectively trigger Alzheimer''s disease-related toxicity, generating great interest in understanding their structures and formation mechanisms. However, AβOs are heterogeneous and transient, making their structure and formation difficult to study. Here, we performed graph network analysis of tens of microsecond massive simulations of early amyloid-β (Aβ) aggregations at near-atomic resolution to characterize AβO structures with sizes up to 20-mers. We found that AβOs exhibit highly curvilinear, irregular shapes with occasional lateral branches, consistent with recent cryo-electron tomography experiments. We also found that Aβ40 oligomers were more likely to develop branches than Aβ42 oligomers, explaining an experimental observation that only Aβ40 was trapped in network-like aggregates and exhibited slower fibrillization kinetics. Moreover, AβO architecture dissection revealed that their curvilinear appearance is related to the local packing geometries of neighboring peptides and that Aβ40''s greater branching ability originates from specific C-terminal interactions at branching interfaces. Finally, we demonstrate that whether Aβ oligomerization causes oligomers to elongate or to branch depends on the sizes and shapes of colliding aggregates. Collectively, this study provides bottom-up structural information for understanding early Aβ aggregation and AβO toxicity.

Graph network analysis on large-scale simulations uncovers the differential branching behaviours of large Aβ40 and Aβ42 oligomers.  相似文献   

4.
Amyloidosis is a term referring to a group of various protein-misfolding diseases wherein normally soluble proteins form aggregates as insoluble amyloid fibrils. How, or whether, amyloid fibrils contribute to tissue damage in amyloidosis has been the topic of debate. In vitro studies have demonstrated the appearance of small globular oligomeric species during the incubation of amyloid beta peptide (Aβ). Nerve biopsy specimens from patients with systemic amyloidosis have suggested that globular structures similar to Aβ oligomers were generated from amorphous electron-dense materials and later developed into mature amyloid fibrils. Schwann cells adjacent to amyloid fibrils become atrophic and degenerative, suggesting that the direct tissue damage induced by amyloid fibrils plays an important role in systemic amyloidosis. In contrast, there is increasing evidence that oligomers, rather than amyloid fibrils, are responsible for cell death in neurodegenerative diseases, particularly Alzheimer’s disease. Disease-modifying therapies based on the pathophysiology of amyloidosis have now become available. Aducanumab, a human monoclonal antibody against the aggregated form of Aβ, was recently approved for Alzheimer’s disease, and other monoclonal antibodies, including gantenerumab, solanezumab, and lecanemab, could also be up for approval. As many other agents for amyloidosis will be developed in the future, studies to develop sensitive clinical scales for identifying improvement and markers that can act as surrogates for clinical scales should be conducted.  相似文献   

5.
Extracellular accumulation of β amyloid peptides of 40 (Aβ40) and 42 residues (Aβ42) has been considered as one of the hallmarks in the pathology of Alzheimer''s disease. In this work, we are able to prepare oligomeric aggregates of Aβ with uniform size and monomorphic structure. Our experimental design is to incubate Aβ peptides in reverse micelles (RMs) so that the peptides could aggregate only through a single nucleation process and the size of the oligomers is confined by the physical dimension of the reverse micelles. The hence obtained Aβ oligomers (AβOs) are 23 nm in diameter and they belong to the category of high molecular-weight (MW) oligomers. The solid-state NMR data revealed that Aβ40Os adopt the structural motif of β-loop-β but the chemical shifts manifested that they may be structurally different from low-MW AβOs and mature fibrils. From the thioflavin-T results, we found that high-MW Aβ42Os can accelerate the fibrillization of Aβ40 monomers. Our protocol allows performing cross-seeding experiments among oligomeric species. By comparing the chemical shifts of Aβ40Os cross seeded by Aβ42Os and those of Aβ40Os prepared in the absence of Aβ42Os, we observed that the chemical states of E11, K16, and E22 were altered, whereas the backbone conformation of the β-sheet region near the C-terminus was structurally invariant. The use of reverse micelles allows hitherto the most detailed characterization of the structural variability of Aβ40Os.

Extracellular accumulation of β amyloid peptides of 40 (Aβ40) and 42 residues (Aβ42) has been considered as one of the hallmarks in the pathology of Alzheimer''s disease.  相似文献   

6.
Despite Alzheimer’s disease (AD) incidence being projected to increase worldwide, the drugs currently on the market can only mitigate symptoms. Considering the failures of the classical paradigm “one target-one drug-one disease” in delivering effective medications for AD, polypharmacology appears to be a most viable therapeutic strategy. Polypharmacology can involve combinations of multiple drugs and/or single chemical entities modulating multiple targets. Taking inspiration from an ongoing clinical trial, this work aims to convert a promising cromolyn–ibuprofen drug combination into single-molecule “codrugs.” Such codrugs should be able to similarly modulate neuroinflammatory and amyloid pathways, while showing peculiar pros and cons. By exploiting a linking strategy, we designed and synthesized a small set of cromolyn–ibuprofen conjugates (4–6). Preliminary plasma stability and neurotoxicity assays allowed us to select diamide 5 and ethanolamide 6 as promising compounds for further studies. We investigated their immunomodulatory profile in immortalized microglia cells, in vitro anti-aggregating activity towards Aβ42-amyloid self-aggregation, and their cellular neuroprotective effect against Aβ42-induced neurotoxicity. The fact that 6 effectively reduced Aβ-induced neuronal death, prompted its investigation into an in vivo model. Notably, 6 was demonstrated to significantly increase the longevity of Aβ42-expressing Drosophila and to improve fly locomotor performance.  相似文献   

7.
Alzheimer''s disease (AD) is a chronic neurodegenerative disorder characterized by progressive and irreversible damage to the brain. One of the hallmarks of the disease is the presence of both soluble and insoluble aggregates of the amyloid beta (Aβ) peptide in the brain, and these aggregates are considered central to disease progression. Thus, the development of small molecules capable of modulating Aβ peptide aggregation may provide critical insight into the pathophysiology of AD. In this work we investigate how photoactivation of three distorted Ru(ii) polypyridyl complexes (Ru1–3) alters the aggregation profile of the Aβ peptide. Photoactivation of Ru1–3 results in the loss of a 6,6′-dimethyl-2,2′-bipyridyl (6,6′-dmb) ligand, affording cis-exchangeable coordination sites for binding to the Aβ peptide. Both Ru1 and Ru2 contain an extended planar imidazo[4,5-f][1,10]phenanthroline ligand, as compared to a 2,2′-bipyridine ligand for Ru3, and we show that the presence of the phenanthroline ligand promotes covalent binding to Aβ peptide His residues, and in addition, leads to a pronounced effect on peptide aggregation immediately after photoactivation. Interestingly, all three complexes resulted in a similar aggregate size distribution at 24 h, forming insoluble amorphous aggregates as compared to significant fibril formation for peptide alone. Photoactivation of Ru1–3 in the presence of pre-formed Aβ1–42 fibrils results in a change to amorphous aggregate morphology, with Ru1 and Ru2 forming large amorphous aggregates immediately after activation. Our results show that photoactivation of Ru1–3 in the presence of either monomeric or fibrillar Aβ1–42 results in the formation of large amorphous aggregates as a common endpoint, with Ru complexes incorporating the extended phenanthroline ligand accelerating this process and thereby limiting the formation of oligomeric species in the initial stages of the aggregation process that are reported to show considerable toxicity.

Photoactivation of a series of Ru(ii) polypyridyl complexes leads to ligand exchange and modulation of amyloid-beta peptide aggregation of relevance to Alzheimer''s disease.  相似文献   

8.
Multiple factors, including amyloid-β (Aβ), metals, and reactive oxygen species (ROS), are involved in the development of Alzheimer''s disease (AD). Metal ions can interact with Aβ species generating toxic oligomers and ROS in vitro; however, the involvement of metal–Aβ complexes in AD pathology in vivo remains unclear. To solve this uncertainty, we have developed a chemical tool (L2-b) that specifically targets metal–Aβ complexes and modulates their reactivity (i.e., metal–Aβ aggregation, toxic oligomer formation, and ROS production). Through the studies presented herein, we demonstrate that L2-b is able to specifically interact with metal–Aβ complexes over metal-free Aβ analogues, redirect metal–Aβ aggregation into off-pathway, nontoxic less structured Aβ aggregates, and diminish metal–Aβ-induced ROS production, overall mitigating metal–Aβ-triggered toxicity, confirmed by multidisciplinary approaches. L2-b is also verified to enter the brain in vivo with relative metabolic stability. Most importantly, upon treatment of 5XFAD AD mice with L2-b, (i) metal–Aβ complexes are targeted and modulated in the brain; (ii) amyloid pathology is reduced; and (iii) cognition deficits are significantly improved. To the best of our knowledge, by employing an in vivo chemical tool specifically prepared for investigating metal–Aβ complexes, we report for the first time experimental evidence that metal–Aβ complexes are related directly to AD pathogenesis.  相似文献   

9.
Amyloid precursor protein (APP) at the plasma membrane is internalized via endocytosis and delivered to endo/lysosomes, where neurotoxic amyloid-β (Aβ) is produced via β-, γ-secretases. Hence, endocytosis plays a key role in the processing of APP and subsequent Aβ generation. β-, γ-secretases as well as APP are localized in cholesterol-enriched lipid raft microdomains. However, it is still unclear whether lipid rafts are the site where APP undergoes endocytosis and whether cholesterol levels affect this process. In this study, we found that localization of APP in lipid rafts was increased by elevated cholesterol level. We also showed that increasing or decreasing cholesterol levels increased or decreased APP endocytosis, respectively. When we labeled cell surface APP, APP localized in lipid rafts preferentially underwent endocytosis compared to nonraft-localized APP. In addition, APP endocytosis from lipid rafts was regulated by cholesterol levels. Our results demonstrate for the first time that cholesterol levels regulate the localization of APP in lipid rafts affecting raft-dependent APP endocytosis. Thus, regulating the microdomain localization of APP could offer a new therapeutic strategy for Alzheimer’s disease.  相似文献   

10.
The pathological finding of amyloid-β (Aβ) aggregates is thought to be a leading cause of untreated Alzheimer’s disease (AD). In this study, we isolated 2-butoxytetrahydrofuran (2-BTHF), a small cyclic ether, from Holothuria scabra and demonstrated its therapeutic potential against AD through the attenuation of Aβ aggregation in a transgenic Caenorhabditis elegans model. Our results revealed that amongst the five H. scabra isolated compounds, 2-BTHF was shown to be the most effective in suppressing worm paralysis caused by Aβ toxicity and in expressing strong neuroprotection in CL4176 and CL2355 strains, respectively. An immunoblot analysis showed that CL4176 and CL2006 treated with 2-BTHF showed no effect on the level of Aβ monomers but significantly reduced the toxic oligomeric form and the amount of 1,4-bis(3-carboxy-hydroxy-phenylethenyl)-benzene (X-34)-positive fibril deposits. This concurrently occurred with a reduction of reactive oxygen species (ROS) in the treated CL4176 worms. Mechanistically, heat shock factor 1 (HSF-1) (at residues histidine 63 (HIS63) and glutamine 72 (GLN72)) was shown to be 2-BTHF’s potential target that might contribute to an increased expression of autophagy-related genes required for the breakdown of the Aβ aggregate, thus attenuating its toxicity. In conclusion, 2-BTHF from H. scabra could protect C. elegans from Aβ toxicity by suppressing its aggregation via an HSF-1-regulated autophagic pathway and has been implicated as a potential drug for AD.  相似文献   

11.
Guanidinyl tryptophan derivatives TGN1, TGN2, TGN3, and TGN4 were synthesized, and these compounds were shown to possess in vitro inhibitory activity for amyloid aggregation in a previous study. Nevertheless, the influence of the TGN series of compounds on the binding and permeation behaviors of an Aβ monomer to the cell membranes was not elucidated. In this study, we investigated the effect of compounds in the TGN series on the behavior of an Aβ monomer regarding its toxicity toward the bilayer lipid membrane using molecular dynamics (MD) simulation. MD simulations suggest that TGN4 is a potential agent that can interfere with the movement of the Aβ monomer into the membrane. The MM-GBSA result demonstrated that TGN4 exhibits the highest affinity to the Aβ1–42 monomer but has the lowest affinity to the bilayer. Moreover, TGN4 also contributes to a decrease in the binding affinity between the Aβ1–42 monomer and the POPC membrane. Regarding the results of the binding mode and conformational analyses, a high number of amino-acid residues were shown to provide the binding interactions between TGN4 and the Aβ1–42 monomer. TGN4 also reduces the conformational transition of the Aβ1–42 monomer by means of interacting with the monomer. The present study presents molecular-level insights into how the TGN series of compounds affect the membrane adsorption and the conformational transition of the Aβ1–42 monomer, which could be valuable for the further development of new anti-Alzheimer agents.  相似文献   

12.
The amyloid hypothesis of Alzheimer’s disease has long been the predominant theory, suggesting that Alzheimer’s disease is caused by the accumulation of amyloid beta protein (Aβ) in the brain, leading to neuronal toxicity in the central nervous system (CNS). Because of breakthroughs in molecular medicine, the amyloid pathway is thought to be central to the pathophysiology of Alzheimer’s disease (AD). Currently, it is believed that altered biochemistry of the Aβ cycle remains a central biological feature of AD and is a promising target for treatment. This review provides an overview of the process of amyloid formation, explaining the transition from amyloid precursor protein to amyloid beta protein. Moreover, we also reveal the relationship between autophagy, cerebral blood flow, ACHE, expression of LRP1, and amyloidosis. In addition, we discuss the detailed pathogenesis of amyloidosis, including oxidative damage, tau protein, NFTs, and neuronal damage. Finally, we list some ways to treat AD in terms of decreasing the accumulation of Aβ in the brain.  相似文献   

13.
Several genetic studies have identified a rare variant of triggering receptor expressed on myeloid cells 2 (TREM2) as a risk factor for Alzheimer’s disease (AD). However, findings on the effects of TREM2 on Aβ deposition are quite inconsistent in animal studies, requiring further investigation. In this study, we investigated whether elevation of TREM2 mitigates Aβ pathology in TgCRND8 mice. We found that peripheral nerve injury resulted in a robust elevation of TREM2 exclusively in reactive microglia in the ipsilateral spinal cord of aged TgCRND8 mice at the age of 20 months. TREM2 expression appeared on day 1 post-injury and the upregulation was maintained for at least 28 days. Compared to the contralateral side, neither amyloid beta plaque load nor soluble Aβ40 and Aβ42 levels were attenuated upon TREM2 induction. We further showed direct evidence that TREM2 elevation in reactive microglia did not affect amyloid-β pathology in plaque-bearing TgCRND8 mice by applying anti-TREM2 neutralizing antibody to selectively block TREM2. Our results question the ability of TREM2 to ameliorate established Aβ pathology, discouraging future development of disease-modifying pharmacological treatments targeting TREM2 in the late stage of AD.  相似文献   

14.
The deposition of beta-amyloid (Aβ) in the brain precedes the onset of symptoms such as cognitive impairment in Alzheimer’s disease (AD); therefore, the early detection of Aβ accumulation is crucial. We previously reported the applicability of the QPLEXTM Alz plus assay kit for the prescreening of Aβ accumulation. Here, we tested the specific application of the kit in a large cohort of cognitively normal (CN) individuals of varying ages for the early detection of Aβ accumulation. We included a total of 221 CN participants with or without brain Aβ. The QPLEXTM biomarkers were characterized based on age groups (1st–3rd tertile) and across various brain regions with cerebral amyloid deposition. The 3rd tertile group (>65 years) was found to be the most suitable age group for the application of our assay kit. Receiver operating characteristic curve analysis showed that the area under the curve (AUC, discrimination power) was 0.878 with 69.7% sensitivity and 98.4% specificity in the 3rd tertile group. Additionally, specific correlations between biomarkers and cerebral amyloid deposition in four different brain regions revealed an overall correlation with general amyloid deposition, consistent with previous findings. Furthermore, the combinational panel with plasma Aβ1–42 levels maximized the discrimination efficiency and achieved an AUC of 0.921 with 95.7% sensitivity and 67.3% specificity. Thus, we suggest that the QPLEXTM Alz plus assay is useful for prescreening brain Aβ levels in CN individuals, especially those aged >65 years, to prevent disease progression via the early detection of disease initiation.Subject terms: Alzheimer''s disease, Neural ageing, ELISA  相似文献   

15.
We here report the synthesis of three new hybrid ligands built around the phenanthroline scaffold and encompassing two histidine-like moieties: phenHH, phenHGH and H’phenH’, where H correspond to histidine and H’ to histamine. These ligands were designed to capture Cu(I/II) from the amyloid-β peptide and to prevent the formation of reactive oxygen species produced by amyloid-β bound copper in presence of physiological reductant (e.g., ascorbate) and dioxygen. The amyloid-β peptide is a well-known key player in Alzheimer’s disease, a debilitating and devasting neurological disorder the mankind has to fight against. The Cu-Aβ complex does participate in the oxidative stress observed in the disease, due to the redox ability of the Cu(I/II) ions. The complete characterization of the copper complexes made with phenHH, phenHGH and H’phenH’ is reported, along with the ability of ligands to remove Cu from Aβ, and to prevent the formation of reactive oxygen species catalyzed by Cu and Cu-Aβ, including in presence of zinc, the second metal ions important in the etiology of Alzheimer’s disease. The importance of the reduced state of copper, Cu(I), in the prevention and arrest of ROS is mechanistically described with the help of cyclic voltammetry experiments.  相似文献   

16.
Pathophysiological shifts in the cerebral levels of sphingolipids in Alzheimer''s disease (AD) patients suggest a link between sphingolipid metabolism and the disease pathology. Sphingosine (SP), a structural backbone of sphingolipids, is an amphiphilic molecule that is able to undergo aggregation into micelles and micellar aggregates. Considering its structural properties and cellular localization, we hypothesized that SP potentially interacts with amyloid-β (Aβ) and metal ions that are found as pathological components in AD-affected brains, with manifesting its reactivity towards metal-free Aβ and metal-bound Aβ (metal–Aβ). Herein, we report, for the first time, that SP is capable of interacting with both Aβ and metal ions and consequently affects the aggregation of metal-free Aβ and metal–Aβ. Moreover, incubation of SP with Aβ in the absence and presence of metal ions results in the aggravation of toxicity induced by metal-free Aβ and metal–Aβ in living cells. As the simplest acyl derivatives of SP, N-acetylsphingosine and 3-O-acetylsphingosine also influence metal-free Aβ and metal–Aβ aggregation to different degrees, compared to SP. Such slight structural modifications of SP neutralize its ability to exacerbate the cytotoxicity triggered by metal-free Aβ and metal–Aβ. Notably, the reactivity of SP and the acetylsphingosines towards metal-free Aβ and metal–Aβ is determined to be dependent on their formation of micelles and micellar aggregates. Our overall studies demonstrate that SP and its derivatives could directly interact with pathological factors in AD and modify their pathogenic properties at concentrations below and above critical aggregation concentrations.

The reactivity of sphingosine and acetylsphingosines towards both metal-free and metal-treated amyloid-β is demonstrated showing a correlation of their micellization properties.  相似文献   

17.
Alzheimer’s disease (AD) is a severe neurodegenerative disorder. AD is pathologically characterized by the formation of intracellular neurofibrillary tangles, and extracellular amyloid plaques which were comprised of amyloid-beta (Aβ) peptides. Aβ induces neurodegeneration by activating microglia, which triggers neurotoxicity by releasing various inflammatory mediators and reactive oxygen species (ROS). Nuclear factor-kappa B (NF-κB) is expressed in human tissues including the brain and plays an important role in Aβ-mediated neuronal inflammation. Thus, the identification of molecules that inhibit the NF-κB pathway is considered an attractive strategy for the treatment and prevention of AD. Isoorientin (3′,4′,5,7-Tetrahydroxy-6-C-glucopyranosyl flavone; ISO), which can be extracted from several plant species, such as Philostachys and Patrinia is known to have various pharmacological activities such as anticancer, antioxidant, and antibacterial activity. However, the effect of ISO on Aβ-mediated inflammation and apoptosis in the brain has yet to be elucidated. In the present study, we investigated whether ISO regulated Aβ-induced neuroinflammation in microglial cells and further explored the underlying mechanisms. Our results showed that ISO inhibited the expression of iNOS and COX-2 induced by Aβ25–35. And, it inhibited the secretion of pro-inflammatory cytokines such as tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6). In addition, ISO reduced the ROS production in Aβ25–35-induced BV2 cells and inhibited NF-κB activation. Furthermore, ISO blocked Aβ25–35-induced apoptosis of BV2 cells. Based on these findings, we suggest that ISO represents a promising therapeutic drug candidate for the treatment and prevention of AD.  相似文献   

18.
Alzheimer’s disease (AD) is a neurodegenerative disorder with an increasing need for developing disease-modifying treatments as current therapies only provide marginal symptomatic relief. Recent evidence suggests the γ-aminobutyric acid (GABA) neurotransmitter system undergoes remodeling in AD, disrupting the excitatory/inhibitory (E/I) balance in the brain. Altered expression levels of K-Cl-2 (KCC2) and N-K-Cl-1 (NKCC1), which are cation–chloride cotransporters (CCCs), have been implicated in disrupting GABAergic activity by regulating GABAA receptor signaling polarity in several neurological disorders, but these have not yet been explored in AD. NKCC1 and KCC2 regulate intracellular chloride [Cl]i by accumulating and extruding Cl, respectively. Increased NKCC1 expression in mature neurons has been reported in these disease conditions, and bumetanide, an NKCC1 inhibitor, is suggested to show potential therapeutic benefits. This study used primary mouse hippocampal neurons to explore if KCC2 and NKCC1 expression levels are altered following beta-amyloid (Aβ1-42) treatment and the potential neuroprotective effects of bumetanide. KCC2 and NKCC1 expression levels were also examined in 18-months-old male C57BL/6 mice following bilateral hippocampal Aβ1-42 stereotaxic injection. No change in KCC2 and NKCC1 expression levels were observed in mouse hippocampal neurons treated with 1 nM Aβ1-42, but NKCC1 expression increased 30-days post-Aβ1-42-injection in the CA1 region of the mouse hippocampus. Primary mouse hippocampal cultures were treated with 1 nM Aβ1-42 alone or with various concentrations of bumetanide (1 µM, 10 µM, 100 µM, 1 mM) to investigate the effect of the drug on cell viability. Aβ1-42 produced 53.1 ± 1.4% cell death after 5 days, and the addition of bumetanide did not reduce this. However, the drug at all concentrations significantly reduced cell viability, suggesting bumetanide is highly neurotoxic. In summary, these results suggest that chronic exposure to Aβ1-42 alters the balance of KCC2 and NKCC1 expression in a region-and layer-specific manner in mouse hippocampal tissue; therefore, this process most likely contributes to altered hippocampal E/I balance in this model. Furthermore, bumetanide induces hippocampal neurotoxicity, thus questioning its suitability for AD therapy. Further investigations are required to examine the effects of Aβ1-42 on KCC2 and NKCC1 expression and whether targeting CCCs might offer a therapeutic approach for AD.  相似文献   

19.
The aberrant aggregation of amyloid-β (Aβ) peptides in the brain has been recognized as the major hallmark of Alzheimer’s disease (AD). Thus, the inhibition and dissociation of Aβ aggregation are believed to be effective therapeutic strategiesforthe prevention and treatment of AD. When integrated with traditional agents and biomolecules, nanomaterials can overcome their intrinsic shortcomings and boost their efficiency via synergistic effects. This article provides an overview of recent efforts to utilize nanomaterials with superior properties to propose effective platforms for AD treatment. The underlying mechanismsthat are involved in modulating Aβ aggregation are discussed. The summary of nanomaterials-based modulation of Aβ aggregation may help researchers to understand the critical roles in therapeutic agents and provide new insight into the exploration of more promising anti-amyloid agents and tactics in AD theranostics.  相似文献   

20.
Alzheimer’s disease (AD) is the most common cause of dementia worldwide. Despite extensive research and targeting of the main molecular components of the disease, beta-amyloid (Aβ) and tau, there are currently no treatments that alter the progression of the disease. Here, we examine the effects of two specific kinase inhibitors for calcium/calmodulin-dependent protein kinase type 1D (CaMK1D) on Aβ-mediated toxicity, using mouse primary cortical neurons. Tau hyperphosphorylation and cell death were used as AD indicators. These specific inhibitors were found to prevent Aβ induced tau hyperphosphorylation in culture, but were not able to protect cells from Aβ induced toxicity. While inhibitors were able to alter AD pathology in cell culture, they were insufficient to prevent cell death. With further research and development, these inhibitors could contribute to a multi-drug strategy to combat AD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号