首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this paper, we present two-level defect-correction finite element method for steady Navier-Stokes equations at high Reynolds number with the friction boundary conditions, which results in a variational inequality problem of the second kind. Based on Taylor-Hood element, we solve a variational inequality problem of Navier-Stokes type on the coarse mesh and solve a variational inequality problem of Navier-Stokes type corresponding to Newton linearization on the fine mesh. The error estimates for the velocity in the $H^1$ norm and the pressure in the $L^2$ norm are derived. Finally, the numerical results are provided to confirm our theoretical analysis.  相似文献   

2.
In this paper, we develop a residual-based a posteriori error estimator for the time-dependent Maxwell's equations in the cold plasma. Here we consider a semi-discrete interior penalty discontinuous Galerkin (DG) method for solving the governing equations. We provide both the upper bound and lower bound analysis for the error estimator. This is the first posteriori error analysis carried out for the Maxwell's equations in dispersive media.  相似文献   

3.
Based on numerical experiments, we analyzed the relationship between the efficiency of the error estimation method proposed by S.I. Repin for approximate solutions of elliptical equations and the problem data and estimation algorithm parameters used.  相似文献   

4.
低马赫数方法通过对可压缩方程中的压力波进行过滤,得到的方程能够对于反应或者传热造成密度出现较大波动问题进行很好描述。此方面的研究大多数集中在多相反应等问题上,然而工程实际上普遍存在的流固耦合以及多场耦合问题却鲜有涉及。本文将低马赫数方法与内嵌边界方法进行结合发展出可以用来求解弱可压缩流动中的流固耦合以及传热问题的数值算法。本文对加热圆柱在封闭腔体内的自然对流进行研究,同时也对本文提出的算法的正确性以及准确性进行了验证。  相似文献   

5.
We consider variational multiscale (VMS) methods with h-adaptive technique for the stationary incompressible Navier–Stokes equations. The natural combination of VMS with adaptive strategy retains the best features of both methods and overcomes many of their deficits. A reliable a posteriori projection error estimator is derived, which can be computed by two local Gauss integrations at the element level. Finally, some numerical tests are presented to illustrate the method’s efficiency.  相似文献   

6.
In this paper, we suggest a very simple and effective post-processing procedure to increase the order of accuracy in time for numerical results obtained by the trapezoidal rule. We first derive a new exact, closed-form, a-priori error estimator for time integration of linear elastodynamics equations by the trapezoidal rule with non-uniform time increments. Based on this error estimator, we suggest a new post-processing procedure (containing additional time integration of elastodynamics equations by the trapezoidal rule with few time increments) that systematically improves the order of accuracy of numerical results, with the increase in the number of additional time increments used for post-processing. For example, the use of just one additional time increment for post-processing after time integration with any number of uniform time increments, renders the order of accuracy of numerical results equal to 10/3. Numerical examples of the application of the new techniques to a system with a single degree of freedom and to a multi-degree system confirm the corresponding increase in the order of convergence of numerical results after post-processing. Because the same trapezoidal rule is used for basic computations and post-processing, the new technique retains all of the properties of the trapezoidal rule, requires no writing of a new computer program for its implementation, and can be easily used with any existing commercial and research codes for elastodynamics.  相似文献   

7.
Present study investigates entropy generation analysis for peristaltic motion of hybrid nanofluid. Hybrid nanofluid is composed of iron-oxide and copper nanoparticles suspended in water. Effects of Hall current, Ohmic heating and mixed convection are taken into account. Governing equations are simplified by utilizing lubrication approach. The numerical solutions for resulting system of differential equations are obtained with the aid of Shooting method. Attention has been given to the analysis of hybrid nanoparticles, Hall parameter and Grashoff number on entropy generation, heat transfer rate, velocity profile and pressure gradient. Outcomes reveal that insertion of nanoparticles decreases the temperature of hybrid nanofluid. It is found that increase in Hall parameter reduces the heat transfer rate at wall. Increment in Hall parameter reduces the entropy generation. Velocity and pressure gradient increases by enhancing Grashoff number. It is believed that the present flow model can prove useful in improving the efficiency of similar thermodynamical systems.  相似文献   

8.
Direct numerical simulation (DNS) of complex flows require solving the problem on parallel machines using high accuracy schemes. Compact schemes provide very high spectral resolution, while satisfying the physical dispersion relation numerically. However, as shown here, compact schemes also display bias in the direction of convection – often producing numerical instability near the inflow and severely damping the solution, always near the outflow. This does not allow its use for parallel computing using domain decomposition and solving the problem in parallel in different sub-domains. To avoid this, in all reported parallel computations with compact schemes the full domain is treated integrally, while using parallel Thomas algorithm (PTA) or parallel diagonal dominant (PDD) algorithm in different processors with resultant latencies and inefficiencies. For domain decomposition methods using compact scheme in each sub-domain independently, a new class of compact schemes is proposed and specific strategies are developed to remove remaining problems of parallel computing. This is calibrated here for parallel computing by solving one-dimensional wave equation by domain decomposition method. We also provide the error norm with respect to the wavelength of the propagated wave-packet. Next, the advantage of the new compact scheme, on a parallel framework, has been shown by solving three-dimensional unsteady Navier–Stokes equations for flow past a cone-cylinder configuration at a Mach number of 4.Additionally, a test case is conducted on the advection of a vortex for a subsonic case to provide an estimate for the error and parallel efficiency of the method using the proposed compact scheme in multiple processors.  相似文献   

9.
In this paper, a high-order finite volume method is employed to solve the local energy approximation model equations for a radio-frequency plasma discharge in a one-dimensional geometry. The so called deferred correction technique, along with high-order Lagrange polynomials, is used to calculate the convection and diffusion fluxes. Temporal discretization is performed using backward difference schemes of first and second orders. Extensive numerical experiments are carried out to evaluate the order and level of accuracy as well as computational efficiency of the various methods implemented in the work. These tests exhibit global convergence rate of up to fourth order for the spatial error, and of up to second order for the temporal error.  相似文献   

10.
The Letter presents a strategy for recovering the unknown parameters of the Duffing oscillator using a measurable output signal. The suggested approach employs the construction of an integral parametrization of one auxiliary output. It is calculated by measuring the difference between the output and its respective delay output. First we estimate the auxiliary output, followed by the application of a modified gradient algorithm, then we adjust the gains of the proposed linear estimator, until this error converges to zero. The convergence of the proposed scheme is shown using Lyapunov method.  相似文献   

11.
For reaction-diffusion-advection equations, the stiffness from the reaction and diffusion terms often requires very restricted time step size, while the nonlinear advection term may lead to a sharp gradient in localized spatial regions. It is challenging to design numerical methods that can efficiently handle both difficulties. For reaction-diffusion systems with both stiff reaction and diffusion terms, implicit integration factor (IIF) method and its higher dimensional analog compact IIF (cIIF) serve as an efficient class of time-stepping methods, and their second order version is linearly unconditionally stable. For nonlinear hyperbolic equations, weighted essentially non-oscillatory (WENO) methods are a class of schemes with a uniformly high-order of accuracy in smooth regions of the solution, which can also resolve the sharp gradient in an accurate and essentially non-oscillatory fashion. In this paper, we couple IIF/cIIF with WENO methods using the operator splitting approach to solve reaction-diffusion-advection equations. In particular, we apply the IIF/cIIF method to the stiff reaction and diffusion terms and the WENO method to the advection term in two different splitting sequences. Calculation of local truncation error and direct numerical simulations for both splitting approaches show the second order accuracy of the splitting method, and linear stability analysis and direct comparison with other approaches reveals excellent efficiency and stability properties. Applications of the splitting approach to two biological systems demonstrate that the overall method is accurate and efficient, and the splitting sequence consisting of two reaction-diffusion steps is more desirable than the one consisting of two advection steps, because CWC exhibits better accuracy and stability.  相似文献   

12.
A heuristic method is proposed to estimate a posteriori that part of the total discretization error which is attributable to the smoothing effect of added dissipation, for finite volume discretizations of the Euler equations. This is achieved by observing variation in a functional of the solution as the level of dissipation is varied, and it is deduced for certain test-cases that the dissipation alone accounts for the majority of the functional error. Based on this result an error estimator and mesh adaptation indicator is proposed for functionals, relying on the solution of an adjoint problem. The scheme is considerably implementationally simpler and computationally cheaper than other recently proposed a posteriori error estimators for finite volume schemes, but does not account for all sources of error. In mind of this, emphasis is placed on numerical evaluation of the performance of the indicator, and it is shown to be extremely effective in both estimating and reducing error for a range of 2d and 3d flows.  相似文献   

13.
In this paper, an improved two-level method is presented for effectively solving the incompressible Navier–Stokes equations. This proposed method solves a smaller system of nonlinear Navier–Stokes equations on the coarse mesh and needs to solve the Oseen-type linearized equations of motion only once on the fine mesh level. Within the proposed two-level framework, a prolongation operator, which is required to linearize the convective terms at the fine mesh level using the convergent Navier–Stokes solutions computed at the coarse mesh level, is rigorously derived to increase the prediction accuracy. This indispensable prolongation operator can properly communicate the flow velocities between the two mesh levels because it is locally analytic. Solution convergence can therefore be accelerated. For the sake of numerical accuracy, momentum equations are discretized by employing the general solution for the two-dimensional convection–diffusion–reaction model equation. The convective instability problem can be simultaneously eliminated thanks to the proper treatment of convective terms. The converged solution is, thus, very high in accuracy as well as in yielding a quadratic spatial rate of convergence. For the sake of programming simplicity and computational efficiency, pressure gradient terms are rigorously discretized within the explicit framework in the non-staggered grid system. The proposed analytical prolongation operator for the mapping of solutions from the coarse to fine meshes and the explicit pressure gradient discretization scheme, which accommodates the dispersion-relation-preserving property, have been both rigorously justified from the predicted Navier–Stokes solutions.  相似文献   

14.
The stability condition of Courant number and diffusion number is proved for an SGSD (stability guaranteed second-order difference) scheme by von Neumann method in implicit and explicit discretization of the one-dimensional convection and diffusion terms. Then, a series of numerical simulations of fluid flow and heat transfer based on two-dimensional unsteady state model is used to study the combined natural and MHD (magnetohydrodynamics) convection in a Joule-heated cavity using the finite volume methods, for the fluid of Pr = 0.01, also we use an SGSD scheme and IDEAL (inner doubly iterative efficient algorithm for linked equations) algorithm. It is found that periodic oscillation flow evolves.We propose a new convergence concept for the simulation oscillation results; the results of the numerical experiments are presented and they confirm our theoretical conclusions. The convergence result is checked in another way. It is found that the two approaches have the same results and can judge the validity of the time step. The proposed method is helpful to get reliable results efficiently.  相似文献   

15.
蒋涛  陈振超  任金莲  李刚 《物理学报》2017,66(13):130201-130201
为了解决传统光滑粒子动力学(SPH)方法求解三维变系数瞬态热传导方程时出现的精度低、稳定性差和计算效率低的问题,本文首先基于Taylor展开思想拓展一阶对称SPH方法到三维热传导问题的模拟,其次引入稳定化处理的迎风思想,最后基于相邻粒子标记和MPI并行技术,结合边界处理方法得到一种能够准确、高效地求解三维变系数瞬态热传导问题的修正并行SPH方法.通过对带有Direclet和Newmann边界条件的常/变系数三维热传导方程进行模拟,并与解析解进行对比,对提出的方法的精度、收敛性及计算效率进行了分析;随后,运用提出的修正并行SPH方法对三维功能梯度材料中温度变化进行了模拟预测,并与其他数值结果做对比,准确地展现了功能梯度材料中温度变化过程.  相似文献   

16.
In this study, we present a new and very accurate numerical method to approximate the Fisher’s-type equations. Firstly, the spatial derivative in the proposed equation is approximated by a sixth-order compact finite difference (CFD6) scheme. Secondly, we solve the obtained system of differential equations using a third-order total variation diminishing Runge–Kutta (TVD-RK3) scheme. Numerical examples are given to illustrate the efficiency of the proposed method.  相似文献   

17.
The validity of using simplified models of compressible fluids for calculations of unstationary convection flows inside closed cavities is tested for the problem of hot gas cooling in a rectangular cavity with cold walls. The Oberbeck-Boussinesq approximation and other simplified models are shown to yield incorrect values of pressure, density, and temperature if average pressure change is not negligible. Modification of the numerical method is proposed, which allows one to describe the temporal dependence of pressure correctly without loss of computational efficiency. The results obtained by using a modified Oberbeck-Boussinesq approximation and the complete equations for a fully compressible fluid are compared.  相似文献   

18.
We combine the finite element method with the Eulerian–Lagrangian Localized Adjoint Method (ELLAM) to solve the convection–diffusion equations that describe the kinematics of magnetohydrodynamic flows, i.e., the advection and diffusion of a magnetic field. Simulations of three two-dimensional test problems are presented and in each case we analyze the energy of the magnetic field as it evolves towards its equilibrium state. Our numerical results highlight the accuracy and efficiency of the ELLAM approach for convection-dominated problems.  相似文献   

19.
解岩  欧阳洁  周文  任朝倩 《计算物理》2013,30(3):337-345
用非结构网格有限体积法求解自然对流换热时,传统的对流项离散格式难以兼顾数值精度与计算效率,我们发展了一种耦合高精度格式的延迟修正方法,用于对流项的离散.高Re数下方腔驱动流数值计算验证了该方法具有较高的计算精度和较好的稳定性.Boussinesq流体的自然对流换热数值模拟,表明该方法能有效克服高Ra数时数值计算发散,可准确捕捉自然对流换热问题中不同偏心率下的等温线和流线分布特征.  相似文献   

20.
In the Lagrangian fractional step method introduced in this paper, the fluid velocity and pressure are defined on a collection of N fluid markers. At each time step, these markers are used to generate a Voronoi diagram, and this diagram is used to construct finite-difference operators corresponding to the divergence, gradient, and Laplacian. The splitting of the Navier-Stokes equations leads to discrete Helmholtz and Poisson problems, which we solve using a two-grid method. The nonlinear convection terms are modeled simply by the displacement of the fluid markers. We have implemented this method on a periodic domain in the planee. We describe an efficient algorithm for the numerical construction of periodic Voronoi diagrams, and we report on numerical results which indicate that the fractional step method is convergent of first order. The overall work per time step is proportional to N log N.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号