首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In December 2019, the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19) was first identified in the province of Wuhan, China. Since then, there have been over 400 million confirmed cases and 5.8 million deaths by COVID-19 reported worldwide. The urgent need for therapies against SARS-CoV-2 led researchers to use drug repurposing approaches. This strategy allows the reduction in risks, time, and costs associated with drug development. In many cases, a repurposed drug can enter directly to preclinical testing and clinical trials, thus accelerating the whole drug discovery process. In this work, we will give a general overview of the main developments in COVID-19 treatment, focusing on the contribution of the drug repurposing paradigm to find effective drugs against this disease. Finally, we will present our findings using a new drug repurposing strategy that identified 11 compounds that may be potentially effective against COVID-19. To our knowledge, seven of these drugs have never been tested against SARS-CoV-2 and are potential candidates for in vitro and in vivo studies to evaluate their effectiveness in COVID-19 treatment.  相似文献   

2.
Malaria is one of the most life-threatening infectious diseases and constitutes a major health problem, especially in Africa. Although artemisinin combination therapies remain efficacious to treat malaria, the emergence of resistant parasites emphasizes the urgent need of new alternative chemotherapies. One strategy is the repurposing of existing drugs. Herein, we reviewed the antimalarial effects of marketed antibiotics, and described in detail the fast-acting antibiotics that showed activity in nanomolar concentrations. Antibiotics have been used for prophylaxis and treatment of malaria for many years and are of particular interest because they might exert a different mode of action than current antimalarials, and can be used simultaneously to treat concomitant bacterial infections.  相似文献   

3.
The interaction between erlotinib (ERL) and bovine serum albumin (BSA) was studied in the presence of quercetin (QUR), a flavonoid with antioxidant properties. Ligands bind to the transport protein BSA resulting in competition between different ligands and displacing a bound ligand, resulting in higher plasma concentrations. Therefore, various spectroscopic experiments were conducted in addition to in silico studies to evaluate the interaction behavior of the BSA-ERL system in the presence and absence of QUR. The quenching curve and binding constants values suggest competition between QUR and ERL to bind to BSA. The binding constant for the BSA-ERL system decreased from 2.07 × 104 to 0.02 × 102 in the presence of QUR. The interaction of ERL with BSA at Site II is ruled out based on the site marker studies. The suggested Site on BSA for interaction with ERL is Site I. Stability of the BSA-ERL system was established with molecular dynamic simulation studies for both Site I and Site III interaction. In addition, the analysis can significantly help evaluate the effect of various quercetin-containing foods and supplements during the ERL-treatment regimen. In vitro binding evaluation provides a cheaper alternative approach to investigate ligand-protein interaction before clinical studies.  相似文献   

4.
A drug–drug multicomponent crystal consisting of metformin (MET) and dobesilate (DBS) was prospectively connected by solvent cooling and evaporating co-crystallization using the multicomponent crystal strategy, not only to optimize the physicochemical properties of single drugs, but also to play a role in the cooperative effect of DBS with the potential vascular protective effects of MET against diabetic retinopathy (DR). The crystal structure analysis demonstrated that MET and DBS were coupled in a 3D supramolecular structure connected by hydrogen-bonding interactions with a molar ratio of 1:1. Almost all hydrogen bond donors and receptors of MET and DBS participated in the bonding, which hindered the combination of remaining potential hydrogen bond sites and water molecules, resulting in a lower hygroscopicity property than MET alone.  相似文献   

5.
6.
大体系分区密度泛函计算方法   总被引:3,自引:0,他引:3  
胡向前  王繁  黎乐民 《化学学报》2004,62(9):847-853,M003
提出一种新的对大体系进行分区密度泛函计算的方法。将大体系划分为若干较小的区,每个小区是一个相对独立的量子力学子体系,计及其它区势场的影响和电子的Pauli排斥作用,可以进行相对独立的密度泛函计算。对各子体系求解单电子方程:(F^k F^kp)C^k=S^kC^kε^k K=A,B,C,…式中F^k,C^k,S^k,ε^k分别为子体系K的Fbck矩阵、轨道系数矩阵、基组重叠矩阵和本征值矩阵,F^kb起强制属于不同子体系的占据轨道之间保持正交的作用。得到的轨道是分区定域化的,汇总各区的计算结果得出整个体系的电子结构信息。通过对一些较大分子的计算,考察了几种因素对分区计算精度的影响。结果表明,提出的方法是可行的,通过控制各区基组的大小,可以基本消除基组截断误差,得到精确的计算结果。对于足够大的体系,本方法是一种线性标度算法;和文献报道的相关方法比较,更容易用于对体系的某些区域进行特别的计算研究。  相似文献   

7.
交联补强硅橡胶包埋18-甲基炔诺酮的释放行为   总被引:2,自引:0,他引:2  
甲基乙烯基硅橡胶;交联补强硅橡胶包埋18-甲基炔诺酮的释放行为;药物释放系统  相似文献   

8.
Microparticle drug carriers made of biodegradable functional polyesters were produced. The polyesters consist of a poly(ε‐caprolactone) backbone bearing pendant acryloyloxy and methacryloyloxy groups. Stable microparticles were prepared via an oil/water emulsion‐solvent evaporation technique eventually combined with a simultaneous crosslinking procedure. Crosslinked particles were obtained via photo‐crosslinking and Michael type addition using diamines as crosslinking agents. Encapsulation of a hydrophobic fluorescent dye and a hydrophilic protein, as model drugs, were performed and confirmed by optical microscopy and Raman spectroscopy. The presence of the functional groups allow for not only the tuning of the degradation rate, but also for further processing and (bio)functionalization.

  相似文献   


9.
A selective release system was demonstrated with a dual‐cargo loaded MSNs. When stimulated by different signals (UV or H+), this system could selectively release different kinds of cargoes individually. Furthermore, this system has been used to provide a combination of chemotherapy and biotherapy for cancer treatment. This controlled release system could be an important step in the development of more effective and sophisticated nanomedicine and nanodevices, due to the possibility of selective release of a complex multi‐drug.  相似文献   

10.
11.
In this study, an adjustable pH‐responsive drug delivery system using mesoporous silica nanoparticles (MSNs) as the host materials and the modified polypeptides as the nanovalves is reported. Since the polypeptide can self‐assemble via electrostatic interaction at pH 7.4 and be disassembled by pH changes, the modified poly(l ‐lysine) and poly(l ‐glutamate) are utilized for pore blocking and opening in the study. Poly(l ‐lysine)‐MSN (PLL‐MSN) and poly(l ‐glutamate)‐MSN (PLG‐MSN) are synthesized via the ring opening polymerization of N‐carboxyanhydrides onto the surface of mesoporous silica nanoparticles. The successful modification of the polypeptide on MSN is proved by Zeta potential change, X‐ray photoelectron spectroscopy (XPS), solid state NMR, and MALDI‐TOF MS. In vitro simulated dye release studies show that PLL‐MSN and PLG‐MSN can successfully load the dye molecules. The release study shows that the controlled release can be constructed at different pH by adjusting the ratio of PLL‐MSN to PLG‐MSN. Cellular uptake study indicates that the drug is detected in both cytoplasm and nucleus, especially in the nucleus. In vitro cytotoxicity assay indicates that DOX loaded mixture nanoparticles (ratio of PLL‐MSN to PLG‐MSN is 1:1) can be triggered for drug release in HeLa cells, resulting in 88% of cell killing.  相似文献   

12.
The present study deals with the modification of sterculia gum to develop the novel colon specific delivery system for use in colon cancer. The sterculia and acrylic acid based hydrogels were synthesized and characterized with FTIR, SEMs, TGA and swelling behavior. Swelling studies of the hydrogels were carried out as a function of reaction parameters such as monomer concentration, initiator concentration, amount of sterculia gum and crosslinker concentration and nature of swelling mediums. Swelling kinetics of the hydrogels and in vitro release dynamics of anticancer model drug methotrexate from the hydrogels were studied to evaluate the swelling mechanism and drug release mechanism from the drug-loaded hydrogels. The values of diffusion exponent for the release of drug were 0.883, 0.910 and 0.787 in distilled water, pH 2.2 buffer and pH 7.4 buffer, respectively. The release of drug from the polymer matrix occurred through a non -Fickian type diffusion mechanism.  相似文献   

13.
Practical applications of guest–host liquid crystal systems are critically dependent on the alignment of the guest species within the liquid crystal host. UV/Vis absorption spectroscopy shows that the 1,5‐dihydroxy‐2,6‐bis‐(4‐propylphenyl)‐9,10‐anthraquinone dye aligns within the E7 nematic host, giving an experimental dichroic ratio of 9.40 and dye order parameter of 0.74. This alignment was modelled by using a combination of density functional theory (DFT) and molecular dynamics (MD) computational approaches that do not require the input of experimental data. Time‐dependent DFT calculations show that the electronic transition dipole moment is highly aligned with the long molecular axis of the dye. Fully atomistic MD simulations show that the long axis of the dye is less highly aligned within the E7 host, indicating that this contribution limits the overall dye alignment and, thereby, the potential practical applications of this particular system. Importantly, this study demonstrates an experimental and combined DFT and MD computational approach that may be applied generally to guest–host systems, providing a potential route to their rational design.  相似文献   

14.
Localized drug delivery represents one of the most challenging uses of systems based on conductive polymer films. Typically, anionic drugs are incorporated within conductive polymers through electrostatic interaction with the positively charged polymer. Following this approach, the synthetic glucocorticoid dexamethasone phosphate is often delivered from neural probes to reduce the inflammation of the surrounding tissue. In light of the recent literature on the neuroprotective and anti-inflammatory properties of tauroursodeoxycholic acid (TUDCA), for the first time, this natural bile acid was incorporated within poly(3,4-ethylenedioxythiophene) (PEDOT). The new material, PEDOT—TUDCA, efficiently promoted an electrochemically controlled delivery of the drug, while preserving optimal electrochemical properties. Moreover, the low cytotoxicity observed with viability assays, makes PEDOT–TUDCA a good candidate for prolonging the time span of chronic neural recording brain implants.  相似文献   

15.
A smart targeting drug delivery nanocarrier is successfully constructed based on phototriggered competition of host–guest interaction. The targeting motif, i.e., biotin is first concealed by β‐cyclodextrin (β‐CD) via host–guest interaction. When the nanoparticles are exposed to UV light, the cleavage of photosensitive groups results in the exposure of adamantane (Ad) groups initially located in the interior of nanoassemblies, and β‐CDs capped on biotin ligands can be replaced by Ad because of the higher binding constant between Ad and β‐CD than that between biotin and β‐CD. The competition of host–guest interaction leads to the recovery of targeting capacity of biotin ligands on the nanocarriers. By virtue of photoregulation, the nanocarriers exhibit controllable ligand‐receptor recognition, which is proved by flow cytometry, laser confocal microscopy, and cytotoxicity assay. This strategy has a potential to improve the selectivity and safety of targeting drug delivery systems.  相似文献   

16.
Under acidic conditions, reduced graphene oxide (rGO) was functionalized with p‐aminobenzoic acid, which formed the diazonium ions through the diazotization with a wet‐chemical method. Surfactants or stabilizers were not applied during the diazotization. After the functionalized rGO was treated through mild sonication in aqueous solution, these functionalized rGO sheets were less than two layers, which was determined by atomic force microscopy (AFM) imaging. The water solubility of functionalized rGO after the introduction of polyethyleneimine (PEI) was improved significantly; it was followed by covalent binding of folic acid (FA) molecules to the functionalized rGO to allow us to specifically target CBRH7919 cancer cells by using FA as a receptor. The loading and release behaviors of elsinochrome A (EA) and doxorubicin (DOX) on the functionalized rGO sheets were investigated. The EA loading ratio onto rGO‐C6H4‐CO‐NH‐PEI‐NH‐CO‐FA (abbreviated rGO‐PEI‐FA, the weight ratio of drug loaded onto rGO‐PEI‐FA) was approximately 45.56 %, and that of DOX was approximately 28.62 %. It was interesting that the drug release from rGO‐PEI‐FA was pH‐ and salt‐dependent. The results of cytotoxicity (3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide (MTT) and flow cytometry (FCM) assays, as well as cell morphology observations) clearly showed that the concentration of rGO‐PEI‐FA as the drug‐delivery composite should be less than 12.5 mg L ?1. The conjugation of DOX and rGO‐PEI‐FA can enhance the cancer‐cell apoptosis effectively and can also push the cancer cells to the vulnerable G2 phase of the cell cycle, which is most sensitive and susceptible to damage by drugs or radiation.  相似文献   

17.
Salicylic acid is a key compound in nonsteroidal anti-inflammatory drugs that has been recently used for preventing the risk of hospitalization and death among COVID-19 patients and in preventing colorectal cancer (CRC) by suppressing two key proteins. Understanding drug–drug interaction pathways prevent the occurrence of adverse drug reactions in clinical trials. Drug–drug interactions can result in the variation of the pharmacodynamics and pharmacokinetic of the drug. Inhibition of the Cytochrome P450 enzyme activity leads to the withdrawal of the drug from the market. The aim of this paper was to develop and validate an HPLC-UV method for the quantification of 4′-hydroxydiclofenac as a CYP2C9 metabolite using salicylic acid as an inhibitor in rat liver microsomes. A CYP2C9 assay was developed and validated on the reversed phase C18 column (SUPELCO 25 cm × 4.6 mm × 5 µm) using a low-pressure gradient elution programming at T = 30 °C, a wavelength of 282 nm, and a flow rate of 1 mL/min. 4′-hydroxydiclofenac demonstrated a good linearity (R2 > 0.99), good reproducibility, low detection, and quantitation limit, and the inter and intra-day precision met the ICH guidelines (<15%). 4′-hydroxydiclofenac was stable for three days and showed an acceptable accuracy and recovery (80–120%) within the ICH guidelines in a rat liver microsome sample. This method will be beneficial for future applications of the in vitro inhibitory effect of salicylic acid on the CYP2C9 enzyme activity in rat microsomes and the in vivo administration of salicylic acid in clinical trials.  相似文献   

18.
采用一步微波法成功制备了表面带氨基的荧光纳米碳点CDots, 并通过酰胺化反应将靶向基团叶酸接枝到碳点表面, 成功获得中间产物CDots-FA. 在此基础上, 通过已合成四臂端酰肼基化合物2与抗肿瘤药物阿霉素(DOX)连接, 实现在碳点表面的阿霉素药物分子的化学键合, 最终获得多功能纳米载药体系DOX-CDots-FA. 利用原子力显微镜(AFM)、高分辨透射电镜(HR-TEM)和荧光光谱仪对荧光纳米碳点CDots的性能进行表征, 并通过核磁共振、紫外-可见吸收光谱对DOX-CDots-FA结构、接枝率进行了表征. 同时对纳米载药体系DOX-CDots-FA体外药物释放行为、细胞毒性及细胞摄取成像进行了系统的研究. 结果表明, DOX-CDots-FA具有良好的pH响应性. 叶酸靶向基团能加速DOX-CDots-FA被HeLa (FR+)细胞摄取, 并表现出更强的细胞毒性. 同时细胞摄入成像实验表明, 在叶酸靶向作用下, DOX-CDots-FA通过内吞作用进入HeLa细胞, 随后阿霉素被释放出来并进入细胞核区域, 抑制细胞的生长, 从而实现靶向治疗, 降低毒副作用.  相似文献   

19.
为了抑制药物的突释效应, 减缓药物的释放速率, 实现不同药物的空间分配及顺序释放, 采用乳化法结合高压静电液滴法, 制备了内部包埋有几丁聚糖/海藻酸钙纳米囊的聚精氨酸/几丁聚糖/海藻酸盐微包纳体系(Nano-in-micro drug delivery system, NiM). 通过荧光标记的方法证实了“微包纳”结构并考察了NiM的理化性能. 以牛血清白蛋白及氟尿嘧啶作为药物模型, 考察了聚精氨酸/几丁聚糖/海藻酸盐微包纳体系对单一蛋白类药物和负载两种药物的缓释性能并进行了动力学模型拟合. 结果表明, Ritger-Peppas模型能够较好地模拟该溶胀控释系统的药物释放过程, 与实验结果比较吻合. 同时也证明了该新型载体体系具有无突释、释放速率减缓及顺序释放的功能, 为新型药物载体体系的研究提供了新的思路.  相似文献   

20.
聚氨酯生物吸收材料及其作为缓释药物载体的研究   总被引:6,自引:1,他引:6  
合成了一系列新的紫外光固化生物吸收性聚氨酯水凝胶网络,测定了材料的含水率及水解性能,并以之为载体,研究了对异烟肼的药物缓释性能。结果表明,该水凝胶的含水率及降解速率与其结构有关,该水凝胶对异烟肼具有缓释作用,释放行为受扩散控制并符合Higuchi方程,表观扩散系数与水凝胶的含水率有关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号