首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Poly(?-caprolactone-co-1,2-butylene carbonate) (PBCCL) was successfully synthesized via terpolymerization of carbon dioxide, 1,2-butylene oxide(BO) and ?-caprolactone (CL). A polymer-supported bimetallic complex (PBM) was used as catalyst. The influences of various reaction conditions such as reaction content, reaction time and reaction temperature on properties of terpolymers were investigated. When CL content increased, the viscosity-average molecular weights (Mv), glass transition temperature (Tg) and decomposition temperature (Td) of PBCCL improved relative to those of poly(1,2-butylene carbonate) (PBC). Prolonging the reaction time resulted in increase in Mv and Tg. As reaction temperature increased, the molar fractions of CL (fCL) increased obviously. When the reaction temperature went beyond 80 °C, the resulting copolymers tended to be crystalline. The thermal properties and degradation behaviors of PBCCL were investigated by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The apparent activation energy and thermal degradation model of PBCCL was estimated by means of Ozawa-Flynn-Wall method and Phadnis-Deshpande method, respectively. The results showed that Tg and Td of the terpolymer PBCCL were much higher than those of PBC. The thermal degradation behavior of PBCCL was evidenced by one-step thermal degradation profile. The average apparent activation energy is 77.06 kJ/mol, the thermal degradation kinetics follows the power law thermal decomposition model.  相似文献   

2.
The density, viscosity and conductivity of ionic liquids (ILs), 1-octyl-3-methylimidazolium tetrafluoroborate ([omim][BF4]), 1-octyl-3-methylimidazolium chloride ([omim][Cl]), 1-hexyl-3-methylimidazolium tetrafluoroborate ([hmim] BF4]), 1-hexyl- 3-methylimidazolium chloride ([hmim][Cl]), 1-hexyl-3-methylimidazolium hexafluorophosphate ([hmim][PF6]), and the [omim][BF4] + [omim][Cl], [hmim][BF4] + [hmim][Cl], and [hmim][PF6] + [hmim][Cl] binary mixtures were studied at dif- ferent temperatures. It was demonstrated that the densities of both the neat ILs and their mixtures varied linearly with temper- ature. The density sensitivity of a binary mixture is between those of the two components. The excess molar volumes (VE) of [hmim][BF4] + [hmim][Cl] and [hmim][PF6] + [hmim][Cl] mixtures are positive in the whole composition range. For [omim][BF4] + [omim][Cl], the VE is also positive in the [omim][Cl]-rich region, but is negative in the [omim][BF4]-rich re- gion. The viscosity or conductivity of a mixture is in the intermediate of those of the two neat ILs. For all the neat ILs and the binary mixtures studied, the order of conductivity is opposite to that of the viscosity. The Vogel-Tammann-Fulcher (VTF) equations can be used to fit the viscosity and conductivity of all the neat ILs and the binary mixtures. The neat ILs and their mixtures obey the Fractional Walden Rule very well, and the values of the Walden slopes are all smaller than unit, indicating obvious ion associations in the neat ILs and the binary mixtures.  相似文献   

3.
Ionic liquids (ILs) are being widely studied due to their unique properties, which make them potential candidates for conventional solvents. To study whether binary mixtures of pure ionic liquids provide a viable alternative to pure ionic liquids for different applications, in this work, the thermal analysis and molar heat capacities of five equimolar binary mixtures of ionic liquids based on imidazolium, pyridinium, pyrrolidinium, and piperidinium cations with dicyanamide, trifluoromethanesulfonate, and bis(trifluoromethylsulfonyl)imide anions have been performed. Furthermore, two pure ionic liquids based on piperidinium cation have been thermally characterized and the heat capacity of one of them has been measured. The determination and evaluation of both the transition temperatures and the molar heat capacities was carried out using differential scanning calorimetry (DSC). It was observed that the thermal behavior of the mixtures was completely different than the thermal behavior of the pure ionic liquids present, while the molar heat capacities of the binary mixtures were very similar to the value of the average of molar heat capacities of the two pure ionic liquids.  相似文献   

4.

To investigate the effects of ionic liquids (ILs) on the oxidative combustion characteristics of coal, the oxidation characteristics of ILs on coal, such as characteristic temperature, thermal mass loss rate, and oxidation kinetics characteristic parameters, were determined. The results the [BMIm][I]-treated coal samples increased cracking temperature (T1), maximum oxidization mass gain (T2), ignition temperature (T3), burnout temperature (T4), minimum thermal rate (Ta), maximum thermal energy (Tb), and maximum thermal rate (Tc) by 33.2, 29.3, 20.7, 42.8, 11.4, 23.0, and 27.9 °C, respectively. The increase mass ratio of coal samples treated with ILs increased and decreased at the water evaporation and thermal decomposition stages, respectively. The apparent activation energy (Ea) of coal samples treated with ILs increased, and the mechanism function also changed accordingly. These showed that the ILs improved the thermal stability of the coal samples in the stages of absorbing oxygen and increased mass, and the loss of combustion. The ILs caused damage to the molecular structure of the coal and ultimately effected changes in the combustion performance. In addition, the [BMIm][BF4] hardly weakens the inhibitory effectiveness of the coal sample over time; coal spontaneous combustion could be effectively inhibited.

  相似文献   

5.
In this study, the thermal hazard features of various lithium-ion batteries, such as LiCoO2 and LiFePO4, were assessed properly by calorimetric techniques. Vent sizing package 2 (VSP2), an adiabatic calorimeter, was used to measure the thermal hazards and runaway characteristics of the 18650 lithium-ion batteries under an adiabatic condition. The thermal behaviors of the lithium-ion batteries were obtained at normal and abnormal conditions in this study. The critical parameters for thermal hazardous behavior of lithium-ion batteries were obtained including the exothermic onset temperature (T 0), heat of decomposition (ΔH), maximum temperature (T max), maximum pressure (P max), self-heating rate (dT/dt), and pressure rise rate (dP/dt). Therefore, the result indicates the thermal runaway situation of the lithium-ion battery with different materials and voltages in view the of TNT-equivalent method by VSP2. The hazard gets greater with higher voltage. Without the consideration of other anti-pressure measurements, different voltages involving 3.3, 3.6, 3.7, and 4.2 V are evaluated to 0.11, 0.23, 0.88, and 1.77 g of TNT. Further estimation of thermal runaway reaction and decomposition reaction of lithium-ion battery can also be confirmed by VSP2. It shows that the battery of a fully charged state is more dangerous than that of a storage state. The technique results showed that VSP2 can be used to strictly evaluate thermal runaway reaction and thermal decomposition behaviors of lithium-ion batteries. The loss prevention and thermal hazard assessment are very important for development of electric vehicles as well as other appliances in the future. Therefore, our results could be applied to define important safety indices of lithium-ion batteries for safety concerns.  相似文献   

6.
Differential Scanning Calorimetry (DSC), thermogravimetry/derivative thermogravimetry (TG/DTG) and infrared spectroscopy (IR) techniques were used to investigate the compatibility between prednicarbate and several excipients commonly used in semi solid pharmaceutical form. The thermoanalytical studies of 1:1 (m/m) drug/excipient physical mixtures showed that the beginning of the first thermal decomposition stage of the prednicarbate (T onset value) was decreased in the presence of stearyl alcohol and glyceryl stearate compared to the drug alone. For the binary mixture of drug/sodium pirrolidone carboxilate the first thermal decomposition stage was not changed, however the DTG peak temperature (T peak DTG) decreased. The comparison of the IR spectra of the drug, the physical mixtures and of the thermally treated samples confirmed the thermal decomposition of prednicarbate. By the comparison of the thermal profiles of 1:1 prednicarbate:excipients mixtures (methylparaben, propylparaben, carbomer 940, acrylate crosspolymer, lactic acid, light liquid paraffin, isopropyl palmitate, myristyl lactate and cetyl alcohol) no interaction was observed.  相似文献   

7.
Isoprene monomer (IPM) is a colorless, volatile liquid obtained from petroleum or coal tar that occurs naturally in many process plants. It is used chiefly to make synthetic rubber. Our study used calorimetric approaches to conduct thermal analysis and hazard assessment of aluminum oxide (Al2O3) and IPM relevant studies. Differential scanning calorimetry, thermal activity monitor III, thermogravimetry, and vent sizing package 2 were used to discuss thermal instability reaction of Al2O3, which adsorbed IPM, and find every possible reason for cases of fire to prevent any future recurrence of the package store and transport related hazards. By means of calorimetric analysis technology, we can observe thermal decomposition or mass loss for different adsorbed concentrations of IPM and Al2O3 to discuss the related thermal stability parameters, such as exothermic onset temperature (T 0), heat of decomposition (ΔH d), self-accelerating exothermic rate (dT dt ?1), pressure rise rate, and maximum reaction temperature (T max). Then, we can understand the potential hazard factors that contribute to disasters related to processing, transport, and storage of security controls and reaction process design.  相似文献   

8.
王伟彬  银建中 《化学进展》2008,20(4):441-449
目前已知的绿色溶剂主要包括超临界流体(Supercritical fluids,SCFs)、离子液体(Ionic liquids,ILs)、二氧化碳膨胀液体(CO2 expanded liquids, CXLs)、水以及上述溶剂的混合物等。其中,由超临界CO2(Supercritical CO2,SCCO2)与ILs混合而构成的新兴溶剂,因为化学热力学方面的特性,成为近年来研究的热点,未来很有发展前景。本文回顾了目前为止在该领域所开展的工作,总结了影响SCCO2与IL相行为的主要因素。包括温度、压力、ILs的含水量、ILs的阴离子、ILs的阳离子、ILs的摩尔体积以及助溶剂等。同时分析了ILs/SCCO2与溶质形成的多元混合物相行为的成因。介绍了ILs/CO2在萃取、反萃取、膜分离、反胶束、萃取与反应耦合等分离方面的应用。由于传统的单元操作很难满足无污染和对过程集成的要求,因而含有ILs/ SCCO2的分离反应耦合过程将是未来是实现清洁生产的发展方向。  相似文献   

9.
Cumene hydroperoxide (CHP) being catalyzed by acid is one of the crucial processes for producing phenol and acetone globally. However, it is thermally unstable to the runaway reaction readily. In this study, various concentrations of phenol and acetone were added into CHP for determination of thermal hazards. Differential scanning calorimetry (DSC) tests were used to obtain the parameters of exothermic behaviors under dynamic screening. The parameters included exothermic onset temperature (T 0), heat of decomposition (ΔH d), and exothermic peak temperature (T p). Vent sizing package 2 (VSP2) was employed to receive the maximum pressure (P max), the maximum temperature (T max), the self-heating rate (dT/dt), maximum pressure rise rate ((dP/dt)max), and adiabatic time to maximum rate ((TMR)ad) under the worst case. Finally, a procedure for predicting thermal hazard data was developed. The results revealed that phenol and acetone sharply caused a exothermic reaction of CHP. As a result, phenol and acetone are important indicators that may cause a thermal hazard in the manufacturing process.  相似文献   

10.
An overview with more than 160 references on the synthesis and stabilization of metal nanoparticles (M-NPs) from metal carbonyls, metal salts in ionic liquids (ILs) and in particular from metal carbonyls in ionic liquids is given. The synthesis of M-NPs can proceed by chemical reduction, thermolysis, photochemical decomposition, electroreduction, microwave and sonochemical irradiation. Commercially available metal carbonyls Mx(CO)y are elegant precursors as they contain the metal atoms already in the zero-valent oxidation state needed for M-NPs. No extra reducing agent is necessary. The side product CO is largely given off to the gas phase and removed from the dispersion. The microwave induced thermal decomposition of metal carbonyls Mx(CO)y in ILs provides an especially rapid and energy-saving access to M-NPs because of the ILs significant absorption efficiency for microwave energy due to their high ionic charge, high polarity and high dielectric constant. The electrostatic and steric properties of ionic liquids allow for the stabilization of M-NPs without the need of additional stabilizers, surfactants or capping ligands and are highlighted by pointing to the DLVO (Derjaugin–Landau–Verwey–Overbeek) and extra-DLVO theory. Examples for the direct use of M-NP/IL dispersions in hydrogenation catalysis of cyclohexene and benzene are given.  相似文献   

11.
Novel Lewis-base ionic liquids replacing typical anions   总被引:1,自引:0,他引:1  
We have synthesized two kinds of new Lewis-base ionic liquids (ILs); one is based on the relatively strong Lewis basic acetate anion, and the other is a salt composed of a mono-alkylated diamine such that the Lewis base site is incorporated in the cation. 1-Octyl-4-aza-1-azonia-bicyclo[2.2.2]octane bis(trifluoromethanesulfonyl)amide, [C8dabco]TFSA, and N-butyl-N-methylpyrrolidinium acetate, [p1,4]OAc, melted into fluid liquids at 26 and 81 °C, respectively. The thermal decomposition of [p1,4]OAc started at around 150 °C, whereas the thermal stability of [C8dabco]TFSA was almost equal to that of typical TFSA-based ILs in spite of the Lewis base site. This suggests that if the Lewis base site is incorporated into the cation the IL can maintain higher thermal stability. In addition, as a further result of the presence of the basic nitrogen, [C8dabco]TFSA can dissolve hydrated Cu(NO3)2 whereas the other TFSA-based ILs cannot.  相似文献   

12.
This paper describes the author's recent work on the preparation and properties of thermally stable ionic liquids (ILs) containing siloxane frameworks. Quaternary ammonium and imidazolium salt-type ILs containing random oligosilsesquioxane frameworks were successfully prepared via the hydrolytic condensation of the corresponding organotrialkoxysilanes by using an aqueous superacid bis(trifluoromethanesulfonyl)imide (HNTf2) solution as a catalyst and solvent. Imidazolium salt-type ILs containing polyhedral oligomeric silsesquioxane (POSS) frameworks were also prepared through a reaction similar to that described above by using a water/methanol mixed solution of HNTf2. In addition, amorphous POSSs with two types of ionic groups randomly distributed in the side chain were prepared. These POSSs were ILs exhibiting fluidity at relatively low temperatures. Furthermore, imidazolium and ammonium salt-type ILs containing cyclic oligosiloxane frameworks were prepared through a reaction similar to that of the corresponding organodialkoxysilanes. The thermal decomposition temperatures of the above ILs containing siloxane frameworks were higher than those of general ILs.  相似文献   

13.

Three different chemical stabilizers were introduced into neat PVC and a wood/PVC composite (containing 50 phr wood flour) to improve their thermal and structural stabilities. The changes in CIE yellowness index, polyene index, %wt loss, and decomposition temperature (Td) were monitored. The effects of type and content of thermal stabilizers, thermal ageing time, and the presence of wood flour were our main interests. The experimental results suggested that the additions of Zn and Pb stearates into PVC and wood/PVC composite could improve the thermal stability of the PVC. At the test temperature of 177°C, the additions of Zn and Pb stearates could improve the thermal stabilities of PVC by retarding the upzipped reaction and by reducing the conjugated double bonds in PVC, Pb stearate being the most suitable for thermally stabilizing the PVC. Around the Td range (~264°C), the addition of Zn stearate reduced the Td value of PVC whereas that of Pb stearate had no effect on the change in Td value. Zeolite loading could shift the Td value of the PVC from 264 to 280°C. The addition of wood particles increased the polyene content and decreased the decomposition temperature of the PVC. The effect of wood flour on the thermal and structural changes of PVC overruled that of thermal stabilizer loading.  相似文献   

14.
Thermal initiated conversion of N-aryl-N'-(2-benzylpyridinium)thioureates into 2-arylamino-4H-benzo[d][1,3]thiazines was studied by non-isothermal differential scanning calorimetry (DSC), thermogravimetry (TG) and differential thermal analysis (DTA) in the solid-state. The values of molar reaction ethalpies (DH r) of six derivatives of thioureates and the melting parameters (T f, DH f, DS f) of the obtained products - benzothiazines were determined by the DSC method. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

15.
Densities and viscosities have been determined for binary mixtures of the ionic liquids (ILs) 1-butyl-3-methylimidazolium thiocyanate [BMIM][SCN], or 1-butyl-4-methylpyridinium thiocyanate [BMPy][SCN], or 1-butyl-1-methylpyrrolidinium thiocyanate [BMPYR][SCN], or 1-butyl-1-methylpiperidinium thiocyanate [BMPIP][SCN] with water over wide range of temperatures (298.15?C348.15) K and ambient pressure. The thermal properties of [BMPy][SCN], i.e. glass transition temperature and the heat capacity at glass transition, have been measured using a differential scanning microcalorimetry, DSC. The decomposition of [BMPy][SCN] was detected. The density and viscosity correlations for these systems have been made using an empirical second-order polynomial and by the Vogel?CFulcher?CTammann equation, respectively. The concentration dependences have been described by polynomials. The excess molar volumes and deviations in viscosity have been calculated from the experimental values and were correlated by Redlich?CKister polynomial expansions. The variations of these parameters, with compositions of the mixtures and temperature, have been discussed in terms of molecular interactions. A qualitative analysis of the trend of properties with composition and temperature was performed. Further, the excess partial molar volumes, $V_{1}^{\mathrm{E}}$ and $V_{2}^{\mathrm{E}}$ , were calculated and discussed. The isobaric expansivities (coefficient of thermal expansion), ??, and the excess isobaric expansivities, ?? E, were determined for four ILs and their mixtures with water. The results indicate that the interactions of thiocyanate ILs with water is not as strong as with alcohols, which is shown by the positive/slightly negative excess molar volumes in these binary systems.  相似文献   

16.
Thermal instability is a loss of thermal control which liberates high amount of energy and pressure. An incident took place during drying of an intermediate having amino alcohol functional group in agitated nutsche filter dryer at plant scale. During our investigation using advanced reactive system screening tool (ARSST), thermal decomposition was observed. Onset temperature of decomposition (T o) is at 85 °C, adiabatic temperature rise due to decomposition (ΔT ad) is 215 °C, maximum temperature attained due to decomposition (T max) is 300 °C, maximum self-heat rate (dT/dt)max is 6,215 °C min?1, and maximum rate of pressure rise (dP/dt)max is 1,442 psi min?1 obtained from ARSST experiments. T D24 value is 75 °C which was estimated experimentally. The correlations of these results were utilized to identify the root cause of this incident and necessary control measures were taken accordingly.  相似文献   

17.
Glass-transition temperature (T g) of ionic liquids (ILs) plays a key role in assessment of their potential for electrolyte application purposes. In this communication, a new group contribution model is presented for the prediction of the T g of 1,3-dialkylimidazolium, a class of ILs, which has great potentialities to serve as electrolyte. To develop this model, the contribution of ILs’ anions and cations is separately considered. This simple model shows a low average relative deviation of 1.94 % for a data set including 109 experimental glass-transition temperature.  相似文献   

18.
Organic peroxides (OPs) have caused many momentous explosions and runaway reactions, resulting from thermal instability, chemical pollutants, and even mechanical shock. In Taiwan, dicumyl peroxide (DCPO), due to its unstable reactive nature, has caused two thermal explosions and runaway reaction incidents in the manufacturing process. To evaluate thermal hazards of DCPO in a batch reactor, we studied thermokinetic parameters, such as heat of decomposition (†H d), exothermic onset temperature (T 0), maximum temperature rise ((dT/dt)max), maximum pressure rise ((dP/dt)max), self-heating rate (dT/dt), etc., via differential scanning calorimetry (DSC) and vent sizing package 2 (VSP2).  相似文献   

19.
A series of new semi-ladder poly[bis(benzimidazobenzisoquinolinones)], obtained by the polycondensation of dinaphthalene dianhydrides and aromatic tetraamines was investigated by TG, DSC and DMA methods. The influence of polymer structure on the thermal behaviour of the poly[bis(benzimidazobenzisoquinolinones)] was examined. The polymers were found to be thermally stable with Td > 723 K in air and Tg ranging from 585 to 701 K. A good agreement was obtained in Tg values measured by DSC and DMA methods. It was found that some cross-linking processes occurred at temperatures above Tg. Some of the isothermal ageing curves were used to find the activation energies of isothermal cross-linking and decomposition.  相似文献   

20.
In this report, we demonstrate that both the thermal stability and the thermal conductivity of bromobutyl rubber (BIIR) nanocomposites could be improved by incorporating the ionic liquids (ILs) modified graphene oxide (GO-ILs) using a solution compounding method. The structure, thermal stability and thermal conductivity of this newly modified BIIR nanocomposites were systematically analyzed and studied. The X-ray diffraction (XRD) analysis of GO-ILs showed that ILs had been effectively intercalated into the interlayer of GO, which was found to be able to raise the exfoliation degree of GO. The increased exfoliation degree facilitated a good dispersion of GO-ILs in the BIIR matrix, as revealed by the scanning electron microscope (SEM) images. The glass transition temperatures (Tg) of the GO-ILs/BIIR nanocomposites were also raised by the addition of GO-ILs, which indicates the strong interfacial adhesion between GO-ILs and the rubber. Most importantly, the incorporation of GO-ILs in the BIIR matrix could effectively improve the thermal stability of the rubber nanocomposites according to our thermogravimetric analysis (TGA). The activation energy (Ea) of thermal decomposition of GO-ILs/BIIR nanocomposites increases with the addition of GO-ILs. Besides, the thermal conductivity of GO-ILs/BIIR nanocomposite with 4 wt% of GO-ILs had 1.3-fold improvement compared to that of unfilled BIIR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号