首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用近红外(NIR)光谱技术和最小二乘支持向量机(LSSVM)参数优化方法,建立定标预测模型测定鱼粉灰分的含量,采用去趋势校正和标准正交校正(DC-SNV)相结合的方式进行光谱预处理,基于网格搜索法建立LSSVM的参数优化模型,提高NIR光谱定量分析的预测精度。结果表明,LSSVM参数网格搜索方法能够有效地应用于鱼粉NIR光谱模型优化,获得的鱼粉灰分的光谱预测值与化学测定值能较准确的匹配,有利于NIR光谱技术快速检测在养殖饲料产品中的应用。  相似文献   

2.
以不同厂家阿莫西林胶囊及其内容物近红外(Near infrared,NIR)光谱为例,寻找评价分段直接标准化算法(Piecewise direct standardization,PDS)进行光谱校正是否成功的量化指标。本研究共涉及76批阿莫西林胶囊样品,其中54批用于建立胶囊剂的定量模型。通过聚类分析,所有胶囊的NIR光谱分成5类,每类视为一个均质样本;分别计算每个均质样本的平均光谱,从该样本中选择10~15张光谱作为PDS校正的目标光谱,对76批阿莫西林胶囊内容物粉末光谱进行校正,利用阿莫西林胶囊定量模型对校正后的光谱进行含量预测;计算校正后的光谱与PDS校正中目标光谱所属均质样本的平均光谱的相似系数,分析其与预测误差的关系。结果表明,校正结果与所选择的目标光谱关系密切。PDS校正光谱与模型中不同均质样本平均光谱的相似系数(r)越大,通常校正效果越好;当r<99%时,一般可判断PDS校正失败(预测误差>5%)。因此,可以用PDS校正后光谱与校正时使用的目标光谱所属的均质样本的平均光谱的相似系数作为判断PDS校正是否成功的标志。  相似文献   

3.
虞科  程翼宇 《分析化学》2006,34(4):561-564
将最小二乘支持向量机(LSSVM)用于近红外(NIR)光谱分析,建立一种新型的NIR光谱快速鉴别方法。以丹参药材道地性鉴别为例,对其NIR漫反射光谱进行主成分分析后,运用LSSVM法建立NIR光谱非线性分类模型,对丹参药材道地性进行快速鉴别。将本方法与经典SVM和BP神经网络法相比较,结果表明,本法判别准确率高,计算时间少,可推广应用于中药等天然产物质量快速鉴别。  相似文献   

4.
建立了中药口服固体制剂原辅料近红外(NIR)光谱数据库,采用模式识别方法研究了NIR光谱数据在物料分类和物性预测中的应用。使用便携式近红外光谱仪快速测量149批原辅料粉末的NIR漫反射光谱数据,并录入iTCM数据库。利用主成分分析(PCA)法探究NIR光谱数据对已知结构物料的分类能力,采用偏最小二乘(PLS)法研究了NIR光谱对原辅料物性参数和直接压片片剂性能的预测能力。经标准正态变量变换(SNV)+Savitzky-Golay(SG)平滑+一阶导数处理后的NIR光谱数据对微晶纤维素、乳糖、乙基纤维素、交联聚维酮和羟丙基甲基纤维素这5类辅料的区分能力较好。NIR光谱数据与原辅料粉末粒径、密度和吸湿性的相关性较强。NIR光谱信息作为物料物理性质的补充,可提高粉末直接压片片剂性能预测模型的性能。NIR光谱数据是iTCM数据库物性参数数据的补充,物性参数与NIR光谱数据的结合能更全面地表征原辅料的性质。  相似文献   

5.
用IR,NIR光谱法结合簇类的独立软模式(SIMCA)识别方法对植物油脂进行分类识别,建立了识别二元、三元植物调和油脂的测定方法。应用NIRCal5.2软件的SIMCA技术,分别为所制备的植物调和油脂建立了IR和NIR识别模型,并讨论了光谱处理和数据处理方法来提高模型的分类识别效果。分别以各种植物调和油脂的IR和NIR光谱为变量,随机抽取2/3的样本作训练集,建立了各个调和油的主成分分析(Princi-pal component analysis,PCA)模型;1/3作验证集,对所建模型进行验证识别。用聚类分析-主成分分析(CLU-PCA)方法考察调和油的IR,NIR光谱信息与其纯油的主成分分布。结果显示,在4000~10000cm-1光谱范围内,SIMCA可以对15种二元调和油和2种三元调和油的NIR光谱分别聚类并识别;并对10种二元调和油和2种三元调和油的IR光谱分别聚类并识别。IR以4个波数1099,1119,1746与2855cm-1的吸收值作为分析基础,选择不同的主成分数及数据预处理方法。各种油脂的SIMCA分析的分类精度均为100%,调和油的验证识别准确率100%,最低识别比例为1%,且IR识别灵敏度高于NIR。  相似文献   

6.
将中红外光谱筛选出的598个纯涤、纯棉及涤/棉混纺样本采用GB/T 2910.11-2009法测定其涤、棉准确含量,其中校正集样本252个,验证集样本346个。使用便携式近红外光谱仪获取样本的原始近红外光谱(NIRS)。校正集样本依据回归系数的分布趋势和范围选取最佳建模谱区,并采用差分一阶导、S-G平滑和均值中心化相结合的方法对原始光谱进行预处理,利用偏最小二乘法(PLS)建立涤/棉混纺织物中涤含量的近红外(NIR)定量分析模型。同时分析了样本颜色对NIRS的影响,探讨了斜线光谱样本、奇异样本和不同组织结构织物对模型预测效果的影响。结果表明:利用PLS法建立的涤/棉混纺织物定量分析模型最优组合包含1个光谱区间和9个主成分因子,校正集相关系数(RC)为0.998,标准偏差(SEC)为0.908。为验证所建模型的有效性和实用性,对346个未参与建模的涤棉样本进行了预测,并将预测结果与国标法测定值进行方差分析,两种方法结果无显著差异,预测正确率达97%以上。模型的建立为废旧涤/棉混纺织物快速、无损分拣提供了基础数据库。  相似文献   

7.
发展了一种基于分段直接校正(PDS)算法结合偏最小二乘法(PLS)的近红外光谱(NIR)定量分析模型转移方法,用于甲醇汽油中甲醇的准确定量分析。首先,制备了20个不同甲醇含量的甲醇汽油样品,并采集其NIR光谱;其次,考察了不同输入变量(800~2000 nm、1100~1900 nm、1100~1700 nm、1390~1700 nm)和光谱预处理方法对PLS校正模型预测性能的影响。在最优化的输入变量(1390~1700 nm)和光谱预处理方法(归一化(Nor)结合多元散射校正(MSC))条件下,分别构建了PLS校正模型和PDS-PLS转移模型。为了进一步验证PDS-PLS模型的预测性能,采用优化后的光谱分别构建了基于域自适应(DA)结合PLS的DA-PLS模型以及核域自适应(KDA)结合PLS的KDA-PLS模型。结果表明,相比其它PLS模型,采用PDS-PLS算法校正转移后构建的模型显著提升了子机预测集的预测性能,决定系数(RP2)为0.9984,均方根误差(RMSEP)为0.0056,平均相对误差(MRE...  相似文献   

8.
应用正交试验设计法,以测定胺类燃料中水分为实例进行近红外光谱(NIR)建模参数的优化选择。以样本集划分方法、校正集比例、光谱预处理方法和波段选择等作为因素进行正交设计,分别建立校正模型,以验证集的标准预测偏差(SEP)为正交试验结果。通过正交试验结果分析,确定最佳建模参数,并且围绕最大影响因素进行优化调整,使预测模型的稳健性和测量结果的准确性得到提高。  相似文献   

9.
土壤总氮近红外光谱分析的波段优选   总被引:1,自引:0,他引:1  
潘涛  吴振涛  陈华舟 《分析化学》2012,40(6):920-924
利用移动窗口偏最小二乘( MWPLS)和Savitzky-Golay(SG)平滑方法优选土壤总氮的近红外(NIR)光谱分析模型.从全部97个土壤样品中随机选出35个样品作为检验集;基于偏最小二乘交叉检验预测偏差(PLSPB),将余下62个样品划分为具有相似性的建模定标集(37个样品)、建模预测集(25个样品).最优波段为1692~2138 nm,SG平滑的导数阶数(OD)、多项式次数(DP)、平滑点数(NSP)分别为0,6,69,PLS因子数为11,建模预测均方根偏差(M-RMSEP)、建模预测相关系数(M-Rp)分别为0.015%,0.931,检验预测均方根偏差(V-RM-SEP)、检验预测相关系数(V-RP)分别为0.018%,0.882.其结果可为设计专用NIR仪器提供有价值的参考.  相似文献   

10.
取48批次水冬瓜根皮鲜药材于50℃分别烘干后粉碎至通过孔径0.23mm的样筛。混匀后装于样品瓶中制备成48个样品,编号为G1~G48,其中42个样品(G1~G42)作为校正集,6个样品(G43~G48)为验证集。应用声光可调滤光器(AOTF)-近红外光谱仪(NIR)采集每个样品的原始光谱。确定NIR光谱预处理方式为一阶微分导数,在1 100~2 200nm波段构建该药材中总黄酮及浸出物含量快速测定的分析模型。采用化学计量学分析软件将校准集样品的光谱信息和上述两测定项目的参考值作数据关联,分别建立该药材中总黄酮和浸出物快速测定的分析模型。用G1样品重复采集其NIR光谱6次,按上述方法作预处理及测定,结果获得总黄酮及浸出物测定值的相对标准偏差(n=6)分别为3.9%,2.8%。仍取G1样品于12h内先后采集其红外光谱8次,按上述相同方法分析,两项测定结果的相对标准偏差分别为2.1%,2.3%,说明12h内样品的稳定性良好。最后将6个验证样品的原始光谱经预处理所得的数据导入化学计量学分析软件作模型预测,两项目的预测值与参考值的相对误差分别在1.6%~6.3%和0.60%~4.3%之间。表明所建模型验证效果良好,应用此方法分析单个样品只需2~5s。  相似文献   

11.
目前中药制剂生产过程中缺乏全过程参数检测和质量控制技术手段,不同生产批次药品化学成分差异较大、质量不够稳定、临床使用疗效和安全性不理想,因此,建立其完善的质量评价体系及其准确快速的质量评价方法,成为中药质量控制的重中之重.通过对刺五加注射液近红外(near infrared,NIR)含量预测模型的谱段选择规律和消除溶剂干扰方法的探讨,发现采用表征混合物结构差异的结构相关谱段结合含量相关谱段作为NIR组分预测模型谱段,用基于水为参比光谱的样本光谱建立含量预测模型,并利用水作为参比光谱识别和提取待分析组分的光谱信息,可以得到较理想的NIR含量预测结果.通过对刺五加注射液中绿原酸、紫丁香苷和刺五加苷E组分的近红外光谱结构相关谱段和含量相关谱段的归属,分别建立了绿原酸、紫丁香苷和刺五加苷E组分的含量预测模型,可用于快速分析刺五加注射液中不同组分的含量.  相似文献   

12.
激光诱导击穿光谱(Laser induced breakdown spectroscopy, LIBS)原始光谱中包含较多噪声信号, 为探究不同滤波方法对LIBS光谱预处理的影响, 本研究以实验室Pb污染处理的蔬菜为研究对象, 采集波长范围在400.45~410.98 nm的LIBS谱线信息, 分别利用相邻平均(Adjacent averaging)、Savitzky-Golay(S-G)滤波器、快速傅里叶变换(Fast Fourier transformation, FFT)对采集的LIBS光谱进行平滑、去噪, 并结合偏最小二乘法(PLS)定量分析模型对光谱处理效果进行评价.结果表明, S-G平滑效果最优, 当S-G滤波器窗口宽度为15, 拟合阶次为3时, PLS定量模型效果最佳, 其验证集均方根误差(RMSEP)为0.26、平均相对误差(ARE)为3.7%.结果表明, 选择适合的滤波方法有助于提高LIBS光谱质量以及检测模型的精度.  相似文献   

13.
在空气环境下,采用激光诱导击穿光谱(LIBS)技术对土壤成分进行检测,建立了基于遗传算法(GA)和偏最小二乘法(PLS)的定量分析模型。将配制的58个土壤样品分为定标集、监控集和预测集,对11种组分Mn,Cr,Cu,Pb,Ba,Al2O3,Ca O,Fe2O3,Mg O,Na2O和K2O的含量分别进行预测。结果表明,GA作为一种谱线选择的预处理方法,可以有效减少用于PLS建模的光谱谱线的数目,从而简化模型。对于土壤中的大部分组成成分,GA-PLS模型能够显著改善传统PLS模型的预测能力。以Mn元素为例,浓度预测均方根误差(RMSEP)从0.0215%降低至0.0167%,平均百分比误差(MPE)从8.10%降低至5.20%。本研究为进一步提高土壤的LIBS定量分析准确度提供了方法参考。  相似文献   

14.
用气相色谱分析值为参照,采用近红外透射光谱(NIR)技术采集相应样品的NIR光谱,研究了涂料固化剂中游离甲苯二异氰酸酯(TDI)含量的快速测定分析方法。 并从120个固化剂样品中挑选出109个代表性的样品建模,选择7320~7250 cm-1和8485~8370 cm-1波段区间,用偏最小二乘法(PLS)和完全交互验证方式建立TDI含量的预测模型。 结果表明,固化剂中游离甲苯二异氰酸酯含量和近红外光谱之间存在较好的相关性,其预测模型的校正集均方差(RMSEC)为0.0815,验证集均方差(RMSEP)为0.0715,模型性能良好。 近红外光谱法可快速准确测定游离甲苯二异氰酸酯(TDI)含量,用于固化剂样品快速分析。  相似文献   

15.
建立了一种新的基于过程分析技术(PAT)和质量源于设计(QbD)设计空间的中药制药过程终点分析与控制方法.以近红外(NIR)光谱技术为PAT工具, 采集正常操作条件下制药过程的多批次NIR光谱; 采用主成分分析结合移动块相对标准偏差(PCA-MBRSD)法, 确定每一批次过程的理想终点样本(DEPs), 由多批DEPs的光谱信息构成过程终点设计空间; 在过程终点设计空间确定的范围内, 建立多变量统计过程控制(MSPC)模型, 利用多变量Hotelling T2和SPE控制图对过程终点进行判断.应用上述方法, 进行了金银花醇沉加醇过程终点检测研究, 结果表明该方法灵敏、准确, 适宜于中药制药过程终点检测.  相似文献   

16.
基于多光谱特征融合技术的面粉掺杂定量分析方法   总被引:1,自引:0,他引:1  
提出了一种基于拉曼光谱技术(Raman)和激光诱导击穿光谱技术(LIBS)的多光谱特征融合技术(MFFT),利用拉曼光谱中分子组分信息和激光诱导击穿光谱中原子组分信息之间的互补特性,采用自适应小波变换(AWT)-竞争性自适应加权(CARS)-偏最小二乘回归(PLS)建模技术,获取了面粉体系更为全面的特征信息。在多光谱特征融合技术中,首先采用AWT-CARS方法分别提取拉曼光谱和激光诱导击穿光谱中的特征变量,然后将两者的特征变量融合为一个向量,采用PLS方法构建MFFT模型,实现了面粉掺杂物的定量分析。通过对二氧化钛、硫酸铝钾等面粉掺杂体系建模分析,考察MFFT模型的有效性。结果表明,与单一拉曼光谱技术或激光诱导击穿光谱技术建立的预测模型相比,MFFT模型显著提升了模型的预测性能,二氧化钛和硫酸铝钾预测模型的线性相关系数分别从相对较差的Raman模型的0.884、0.877提升到0.981、0.980,其预测均方根误差分别从相对较差的Raman模型的0.151、0.154降低到0.069、0.068。表明多光谱特征融合技术可以准确提取Raman光谱中的分子信息和LIBS光谱中的元素信息,使其互为补充、互为校正,进而有效克服面粉基质对掺杂组分定量分析的干扰,显著提高模型的预测精度。  相似文献   

17.
建立使用近红外光谱法(NIR)快速测定溶剂型木器涂料稀释剂中甲苯、乙苯、对二甲苯、间二甲苯和邻二甲苯等苯系物含量方法。收集涂料稀释剂样品,使用气相色谱法(GC)测定苯系物含量,并采集其近红外光谱信息,采用偏最小二乘法(PLS)建立NIR光谱与苯系物含量的线性关系模型。苯系物校正均方差(RMSEC)在(0.47~1.40)%之间、相关系数(R2)在0.956~0.988之间;预测均方差(RMSEP)在(0.73~2.32)%之间、相关系数(R2)在0.951~0.986之间。NIR模型预测效果良好,定量方法快速、简单、准确,可在检测涂料的有毒有害物质中推广应用。  相似文献   

18.
利用近红外光谱技术对252个涤/棉混纺织物进行研究,建立了不同光谱特征的涤/棉混纺织物的偏最小二乘(PLS)定量分析模型。将近红外光谱异常样本与光谱正常样本分别建模,显著提高了定量分析模型的预测精度、拓宽了模型的适用范围。以涤、棉主要吸收峰区间为基本建模波段,进行双向扩展,筛选出最佳建模波段,以相关系数(R)、预测集标准差(SEP)和验证集准确率优化建模条件,并与未分别建模的PLS模型相比较。用346个未参与建模的废旧涤/棉混纺织物对模型进行外部验证,外部验证准确率为92%,识别时间8s。  相似文献   

19.
取原油样品120个,分别按照GB/T 11133-2015和GB/T 17040-2008中所述方法测定了上述原油样品中的水分和硫的含量。通过优化的近红外光谱(NIRS)条件采集了上述原油样品的NIR光谱图。采用杠杆值算法剔除4个异常样品。在建立水分含量分析模型时,采用的条件为:用Savitzky-Golay法对光谱进行滤波预处理,建模光谱区间为6 200~8 200cm-1,主成分数为6,用偏最小二乘回归法(PLS)交叉验证建立分析模型。硫含量分析模型的建立条件为:采用二阶导数-Norris Derivative对光谱进行预处理,建模光谱区间为4 400~4 700cm-1,主成分数为6,用PLS交叉验证建立分析模型。水分和硫含量模型的预测值与测定值的相关性较好。水分模型的决定系数(R2c)为0.989 9,校正标准偏差(RMSEC)为0.084 2,说明其预测效果较好,可用于原油中水分含量的预测。硫含量模型的R2c为0.996 3,RESEC为0.069 6,说明此模型的预测效果也较好,可用原油中硫含量的预测。应用所建立的两个模型对10个未知原油样品中水分和硫含量进行了预测,并与其测定值比较,结果表明两者之间的相对偏差均小于10%。  相似文献   

20.
邵学广  陈达  徐恒  刘智超  蔡文生 《中国化学》2009,27(7):1328-1332
偏最小二乘法(PLS)在近红外光谱(NIR)定量分析中占有重要地位,但预测结果往往容易受到样本分组和奇异样本等因素的影响,稳健性不强。多模型PLS (EPLS)方法在模型稳健性上得到提高,然而它无法识别样本中存在的奇异样本。为了同时提高模型的预测准确性和稳健性,本文提出了一种根据取样概率重新取样的多模型PLS方法,称为稳健共识PLS(RE-PLS)方法。该方法通过迭代赋权偏最小二乘法(IRPLS)计算样本回归残差得到每个校正集样本的取样概率,然后根据样本的取样概率来选择训练子集建立多个PLS模型,最后将所有PLS模型的预测结果平均作为最终预测结果。该方法用于两种不同植物样品的近红外光谱建模,并与传统的PLS及EPLS方法进行比较。结果表明该方法可以有效的避免校正集中奇异样本对模型的影响,同时可以提高预测精确度和稳健性。对于含有较多奇异样本的,复杂近红外光谱烟草实际样本,利用简单PLS或者EPLS方法建模预测效果不是很理想,而RE-PLS凭借其独特优势则有望在这种复杂光谱定量分析中得到广泛的应用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号