首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Essential oils have been studied for various applications, including for therapeutic purposes. There is extensive literature regarding their properties; however, their low stability limits their application. Generally, the microencapsulation of essential oils allows enhanced stability and enables the potential incorporation in solid dosage forms. Lavender and peppermint oils were encapsulated in microparticles using a spray-drying technique under optimized conditions: 170 °C temperature, 35 m3/h aspiration volume flow, and 7.5 mL/min feed flow. Arabic gum and maltodextrin were used as coating polymers individually in varying concentrations from 5 to 20% (w/v) and in combination. The microparticles were studied for morphology, particle size, oil content, and flowability. The formulated powder particles showed a high yield of 71 to 84%, mean diameter 2.41 to 5.99 µm, and total oil content of up to 10.80%. The results showed that both the wall material type and concentration, as well as the type of essential oil, significantly affected the encapsulation process and the final particle characteristics. Our study has demonstrated that the encapsulation of lavender and peppermint oils in Arabic gum/maltodextrin microparticles by spray-drying represents a feasible approach for the conversion of liquids into solids regarding their further use in powder technology.  相似文献   

2.
COVID-19 has had an impact on human quality of life and economics. Scientists have been identifying remedies for its prevention and treatment from all possible sources, including plants. Nigella sativa L. (NS) is an important medicinal plant of Islamic value. This review highlights the anti-COVID-19 potential, clinical trials, inventions, and patent literature related to NS and its major chemical constituents, like thymoquinone. The literature was collected from different databases, including Pubmed, Espacenet, and Patentscope. The literature supports the efficacy of NS, NS oil (NSO), and its chemical constituents against COVID-19. The clinical data imply that NS and NSO can prevent and treat COVID-19 patients with a faster recovery rate. Several inventions comprising NS and NSO have been claimed in patent applications to prevent/treat COVID-19. The patent literature cites NS as an immunomodulator, antioxidant, anti-inflammatory, a source of anti-SARS-CoV-2 compounds, and a plant having protective effects on the lungs. The available facts indicate that NS, NSO, and its various compositions have all the attributes to be used as a promising remedy to prevent, manage, and treat COVID-19 among high-risk people as well as for the therapy of COVID-19 patients of all age groups as a monotherapy or a combination therapy. Many compositions of NS in combination with countless medicinal herbs and medicines are still unexplored. Accordingly, the authors foresee a bright scope in developing NS-based anti-COVID-19 composition for clinical use in the future.  相似文献   

3.
以天然高分子阿拉伯树胶(AG)为还原剂和稳定剂制备了金纳米粒子;将含有金纳米粒子(Au NPs)、阿拉伯树胶和氨水的溶液滴加到乙醇中形成AG-Au NPs复合胶团;利用正硅酸乙酯水解,在AG-Au NPs表面包覆二氧化硅壳层;通过简单水洗的方法得到了金纳米粒子@二氧化硅(Au@SiO_2)中空微球.采用透射电子显微镜(TEM)、X射线衍射仪(XRD)和氮气吸附实验等对Au@SiO_2中空微球进行表征.通过设计对比实验,证实阿拉伯树胶在中空结构形成过程中起到模板剂的作用.催化性能测试结果表明,所制备的Au@SiO_2中空微球在硼氢化钠还原亚甲基蓝的反应中表现出良好的催化活性和重复使用性.  相似文献   

4.
王娜  谷岸  屈雅洁  雷勇 《色谱》2022,40(8):753-762
热裂解-气相色谱/质谱(Py-GC/MS)技术能够实现微量样品中有机组分的准确、快速检测,非常适用于文物中各类天然有机材料的定性分析。该研究以中国古代书画、建筑、器物等文化遗产中常用的淀粉、桃胶,以及西方文化遗产中常用的阿拉伯胶等多糖类胶结材料为研究对象,系统分析并总结各类材料的Py-GC/MS特征裂解组分及辨别方法。研究发现,淀粉、桃胶、阿拉伯胶在色谱保留时间前段的裂解产物基本一致,主要是小分子呋喃、酮类组分;在保留时间中段3类材料的裂解产物主要是呋喃型酮等组分,但不同材料的具体裂解组分差异明显;在保留时间后段,3类材料检出多种单糖衍生物以及单糖低聚体衍生物,其中桃胶与阿拉伯胶裂解组分较为接近,但与淀粉完全不同。因此,可根据不同保留时间段淀粉、桃胶、阿拉伯胶裂解产物的差异实现3类材料的辨别,其中1,6-脱水-β-D-吡喃葡萄糖只在淀粉中检出且色谱峰强度高,可以作为识别淀粉的特征组分;此外,可根据桃胶、阿拉伯胶在保留时间后段的裂解产物主要质谱碎片离子m/z 60、m/z 101的提取离子流图分布特征实现其辨别。基于所建立的Py-GC/MS方法,研究推断故宫旧藏清代剔红云龙纹天球瓶瓶口部...  相似文献   

5.
Biopolymers, especially polysaccharides (e.g., gum Arabic), are widely applied as drug carriers in drug delivery systems due to their advantages. Curcumin, with high antioxidant ability but limited solubility and bioavailability in the body, can be encapsulated in gum Arabic to improve its solubility and bioavailability. When curcumin is encapsulated in gum Arabic, it is essential to understand how it works in various conditions. As a result, in Simulated Intestinal Fluid and Simulated Gastric Fluid conditions, we investigated the potential of gum Arabic as the drug carrier of curcumin. This study was conducted by varying the gum Arabic concentrations, i.e., 5, 10, 15, 20, 30, and 40%, to encapsulate 0.1 mg/mL of curcumin. Under both conditions, the greater the gum Arabic concentration, the greater the encapsulation efficiency and antioxidant activity of curcumin, but the worse the gum Arabic loading capacity. To achieve excellent encapsulation efficiency, loading capacity, and antioxidant activity, the data advises that 10% is the best feasible gum Arabic concentration. Regarding the antioxidant activity of curcumin, the findings imply that a high concentration of gum Arabic was effective, and the Simulated Intestinal Fluid brought an excellent surrounding compared to the Simulated Gastric Fluid solution. Moreover, the gum Arabic releases curcumin faster in the Simulated Gastric Fluid condition.  相似文献   

6.
The extent of the degradation of gum exudates from Acacia and Combretum spp. in different methylation procedures has been studied. Methylation of C. nigricans gum with the sodium hydride—iodomethane—dimethyl sulphoxide system caused losses of rhamnose and galacturonic acid that did not occur with two other systems. In a study of the extent of the degradation suffered by the gums from Acacia seyal and Combretum nigricans during methylation with the Haworth method, partially methylated products, isolated at intervals during the reaction, were analysed: C. nigricans gum suffered much more rapid and extensive degradation than A. seyal gum; this degradation must be taken into account in structural analyses of gums of the Combretum genus.  相似文献   

7.
Glutaraldehyde-crosslinked O-carboxymethyl chitosan (O-CMC)–gum Arabic (GA) coacervates were characterized against coacervation acidity. As the coacervation pH increased from 3.0 to 6.0, the crosslinking degree of the coacervates and its sensitivity to glutaraldehyde concentration variation declined gradually, but the elasticity increased markedly. Crosslinking improved the structure compactness and thermal stability of the coacervates and high coacervation pH favored the increase of the two parameters, but a reverse trend was observed regarding swelling ratio in the simulated gastric fluid. It was concluded that glutaraldehyde-crosslinked O-CMC–GA coacervates with required properties could be tailored by selecting an appropriate complexation acidity.  相似文献   

8.
Exudate gum polysaccharides have a diverse range of functionalities in food, cosmetics, textiles, biomedical, pharmaceutical and other industries for centuries. The potentiality of gum odina as tablet binder, coacervates (chitosan‐gum odina complex) for colon‐targeted drug delivery system and also as prebiotic with immunomodulating properties was reported earlier. Since no detail study of the physicochemical, functional properties of the gum has been reported, the present investigation deals with physicochemical, compositional and functional characterisations of purified gum odina (PGO) for adopting in food and pharmaceutical industry. PGO, an arabinogalactan, was obtained by ethanol precipitation from exudates (gum odina) of tropical deciduous plant Odina wodier Roxb. Colour profiling of PGO including L* (87.74 ± 0.42), a* (1.73 ± 0.65) and b* (7.79 ± 0.58) was determined. Physicochemical parameters revealed good flow ability and compressibility desired for an excipient. Concentration‐dependent surface tension was measured by du Noüy ring method. Rheological study showed pseudoplastic behaviour of PGO dispersion. Sugar analysis by gas liquid chromatography indicated presence of arabinogalactan in PGO. Size exclusion chromatography of PGO revealed two high‐molecular‐weight components PGO‐I (95%, Arabinose:Galactose :: 1:1.6) and PGO‐II (5%, Arabinose:Galactose :: 1:4). Further characterisations of PGO by means of CHNS, FTIR, differential scanning calorimetry, X‐ray diffraction, transmission electron microscopy, scanning electron microscopy and energy‐dispersive X‐ray diffraction, conductivity, pH, zeta potential analysis and antioxidant activity indicated typical polysaccharide characteristics. Collectively, this work established the fundamental properties of PGO and the results presented here will facilitate the applications of PGO as sustainable food additive, pharmaceutical excipient for commercial adoption.  相似文献   

9.
《先进技术聚合物》2018,29(1):151-159
Super porous gum Arabic (GA) cryogels were synthesized by crosslinking of natural GA with divinyl sulfone at cryogenic conditions, −20°C for potential biomedical applications. Humic acid (HA) nanoparticles were also prepared by using degradable and biocompatible crosslinkers such as trimethylolpropane triglycidyl ether, poly(ethylene glycol) diglycidyl ether, and trisodium trimetaphosphate in a single step and then entrapped within GA cryogel network as GA/HA particle cryogel. Furthermore, GA/HA cryogel was used as a template for Ag, Cu, and Fe nanoparticle preparation, and their antimicrobial properties were tested against Escherichia coli, Staphylococcus aureus, and Bacillus subtilis strains. The minimum inhibition concentration values of Ag and Cu nanoparticle‐loaded GA/HA cryogel composites were determined as 10 mg mL−1. Furthermore, the blood compatibility tests such as hemolysis and blood clotting indexes were determined for GA cryogels and found to be more compatible with 0.08 ± 0.01% hemolysis and 89.4 ± 6.1 blood clotting values, whereas the hemolysis of the Ag, Cu, and Fe nanoparticle‐loaded GA/HA Ag, Cu, and Fe metal nanoparticle cryogel composites decreased in the order of Fe > Cu > Ag nanoparticles.  相似文献   

10.
In drug discovery programs, predicting key example compounds in competitors' patent applications is important work for scientists working in the same or in related research areas. In general, medicinal chemists are responsible for this work, and they attempt to guess the identity of key compounds based on information provided in patent applications, such as biological data, scale of reaction, and/or optimization of the salt form for a particular compound. However, this is sometimes made difficult by the lack of such information. This paper describes a method for predicting key compounds in competitors' patent applications by using only structural information of example compounds. Based on the assumption that medicinal chemists usually carry out extensive structure--activity relationship (SAR) studies around key compounds, the method identifies compounds located at the centers of densely populated regions in the patent examples' chemical space, as represented by Extended Connectivity Fingerprints (ECFPs). For the validation of the method, a total of 30 patents containing structures of launched drugs were selected to test whether or not the method is able to predict key compounds (the launched drugs). In 17 out of the 30 patents (57%), the method was able to successfully predict the key compounds. The result indicates that our method could provide an alternative approach to predicting key compounds in cases where the conventional medicinal chemist's approach does not work well. This method could also be used as a complement to the traditional medicinal chemist's approach.  相似文献   

11.
Gum arabic, a natural polysaccharide derived from exudates of Acacia senegal and Acacia seyal trees, is a commonly used food hydrocolloid. The complex chemical structure of the gum has been widely studied revealing a multifraction material consisting mainly of a highly branched polysaccharide and a protein–polysaccharide complex (GAGP) as a minor component. This work investigates its mesoscopic structure in aqueous solution by small‐angle X‐ray and neutron scattering combined with cryotransmission electrons microscopy. Scattering measurements reveal an intricate shape composed of many spheroidal aggregates assigned to the polysaccharide with a small amount of larger coils. A scattering peak is observed at moderate to high concentrations, the spacing of which exhibits a c?1/3 power law relation to polymer concentration (c). Upon addition of salt, this peak disappears, indicating its electrostatic nature. The large coils contribute a q?2 power law at the low scattering vector (q) range. However, at low concentration in which the interaggregate peak is not observed, a q?1 power law at the low q range indicates the possible existence of a fraction with a locally extended conformation. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 3265–3271, 2006  相似文献   

12.
13.
O-Methylation is of outstanding importance in structural polysaccharide chemistry. A novel method for the methylation of polysaccharides using microwave (MW) irradiation is described. Seed gum from Cyamopsis tetragonolobus (Guar) was fully methylated with dimethyl sulphate and sodium hydroxide using 100% microwave power for 4 min in 68% yield. The completely methylated seed gum thus obtained was hydrolyzed by 70% formic acid followed by 0.5N H2SO4 under full microwave power for 1.16 and 1.66 min, respectively. The partially methylated monosaccharides were separated and identified.  相似文献   

14.
The pharmacological activities in bioactive plant extracts play an increasing role in sustainable resources for valorization and biomedical applications. Bioactive phytochemicals, including natural compounds, secondary metabolites and their derivatives, have attracted significant attention for use in both medicinal products and cosmetic products. Our review highlights the pharmacological mode-of-action and current biomedical applications of key bioactive compounds applied as anti-inflammatory, bactericidal with antibiotics effects, and pain relief purposes in controlled clinical studies or preclinical studies. In this systematic review, the availability of bioactive compounds from several salt-tolerant plant species, mainly focusing on the three promising species Aster tripolium, Crithmum maritimum and Salicornia europaea, are summarized and discussed. All three of them have been widely used in natural folk medicines and are now in the focus for future nutraceutical and pharmacological applications.  相似文献   

15.
Houttuynia cordata is a medicinal and edible plant with a wide biological interest. Many parts were discarded due to various modes of consumption, resulting in resource waste. In this study, a comprehensive study was conducted on various edible indicators and medicinal components of Houttuynia cordata to understand its edible and medicinal value. The edible indexes of each root, stem, and leaf were determined, and the metabolites of different parts were investigated using the headspace solid-phase micro-extraction technique (HS-SPME-GC-MS). The differential metabolites were screened by orthogonal partial least squares discriminant analysis (OPLS-DA) and clustering analysis. The results of the study showed that the parts of Houttuynia cordata with high edibility values as a vegetable were mainly the roots and leaves, with the highest vitamin C content in the roots and the highest total flavonoids, soluble sugars, and total protein in the leaves. The nutrient content of all the stems of Houttuynia cordata was lower and significantly different from the roots and leaves (p < 0.05). In addition, 209 metabolites were isolated from Houttuynia cordata, 135 in the roots, 146 in the stems, 158 in the leaves, and 91 shared metabolites. The clustering analysis and OPLS-DA found that the parts of Houttuynia cordata can be mainly divided into above-ground parts (leaves and stems) and underground parts (roots). When comparing the differential metabolites between the above-ground parts and underground parts, it was found that the most important medicinal component of Houttuynia cordata, 2-undecanone, was mainly concentrated in the underground parts. The cluster analysis resulted in 28 metabolites with up-regulation and 17 metabolites with down-regulation in the underground parts. Most of the main components of the underground part have pharmacological effects such as anti-inflammatory, anti-bacterial and antiviral, which are more suitable for drug development. Furthermore, the above-ground part has more spice components and good antioxidant capacity, which is suitable for the extraction of edible flavors. Therefore, by comparing and analyzing the differences between the edible and medicinal uses of different parts of Houttuynia cordata as a medicinal and food plant, good insights can be obtained into food development, pharmaceutical applications, agricultural development, and the hygiene and cosmetic industries. This paper provides a scientific basis for quality control and clinical use.  相似文献   

16.
A method for the identification and the semi-quantitative determination of the food additive gum Arabic in wines is described. Tests carried out on solutions spiked with known amounts of wine and gum Arabic polysaccharides allowed to define the suitable conditions for their quantitative precipitation and size exclusion analysis. CG-MS analyses of the different recovered fractions allowed to discriminate between gum Arabic and wine polysaccharides through the identification of glucose and mannose present only in wine polysaccharides. The proposed method was based on the wine polysaccharides free peak area obtained by size exclusion chromatography. The same cut-off time was always used both in the preparation of the calibration plot and in the analysis of the real samples. Gum Arabic was determined in a ratio of 1/10 w/w with wine polysaccharides with a detection limit of 0.074 mg ml(-1) which is lower than the lowest gum Arabic amount usually added into wines. Owing to the moderately low natural variability of the gum Arabic standards the described procedure is suitable for a semi-quantitative analysis even if its accuracy allowed a quite reliable determination of the gum Arabic amount usually added to wine.  相似文献   

17.
The COVID-19 pandemic needs no introduction at present. Only a few treatments are available for this disease, including remdesivir and favipiravir. Accordingly, the pharmaceutical industry is striving to develop new treatments for COVID-19. Molnupiravir, an orally active RdRp inhibitor, is in a phase 3 clinical trial against COVID-19. The objective of this review article is to enlighten the researchers working on COVID-19 about the discovery, recent developments, and patents related to molnupiravir. Molnupiravir was originally developed for the treatment of influenza at Emory University, USA. However, this drug has also demonstrated activity against a variety of viruses, including SARS-CoV-2. Now it is being jointly developed by Emory University, Ridgeback Biotherapeutics, and Merck to treat COVID-19. The published clinical data indicate a good safety profile, tolerability, and oral bioavailability of molnupiravir in humans. The patient-compliant oral dosage form of molnupiravir may hit the market in the first or second quarter of 2022. The patent data of molnupiravir revealed its granted compound patent and process-related patent applications. We also anticipate patent filing related to oral dosage forms, inhalers, and a combination of molnupiravir with marketed drugs like remdesivir, favipiravir, and baricitinib. The current pandemic demands a patient compliant, safe, tolerable, and orally effective COVID-19 treatment. The authors believe that molnupiravir meets these requirements and is a breakthrough COVID-19 treatment.  相似文献   

18.
Guar gum was chemically modified by sulphonation using chlorosulphonic acid (ClSO3H) as a reagent. Effects of molar ratio of ClSO3H to glucopyranosic unit (ClSO3H/GU), reaction time and reaction temperature on the degree of sulphonation (DS) and molecular weight (Mw) of products were studied. The structures of guar gum sulphate were investigated by GPC, FT‐IR and UV‐Visible spectroscopy. Activated partial thromboplastin time (APTT) assay showed that the guar gum sulphate could inhibit the intrinsic coagulant pathway. The anticoagulant activity strongly depended on the DS and Mw of polysaccharides. DS>0.56 was essential for anticoagulant activity. The guar gum sulphate with the DS of 0.85 and the Mw of 3.40×104 had the best blood anticoagulant activity.  相似文献   

19.
The genus Cajanus (Family: Fabaceae) consists of approximately 37 species, and Cajanus cajan (C. cajan) is a significant member of the genus. It is a commercial legume crop widely grown in sub-tropical and semi-arid tropical areas of the world. C. cajan is well known for its folk medicinal uses to treat various disorders, such as toothache, dizziness, diabetes, stomachache, female ailments and chronic infections. These properties have been linked to the presence of several value-added nutritional and bioactive components. Different solvent extracts from C. cajan (leaves, root, stem and seeds) have been evaluated for their phytochemical and biological activities, namely antioxidant, antimicrobial, antidiabetic, neuroprotective, and anti-inflammatory effects. Taken together, and considering the prominent nutraceutical and therapeutic properties of C. cajan, this review article focuses on the important details including ethnomedicinal uses, chemical composition, biological applications and some other medicinal aspects related to C. cajan nutraceutical and pharmacological applications.  相似文献   

20.
The synthesis of cashew gum-g-polyacrylamide was carried out at 60 °C by a radical polymerisation using potassium persulphate as the redox initiator under N2 atmosphere. A series of graft copolymers, varying in acrylamide concentration and keeping the concentration of the initiator and polysaccharide constant, was prepared. These graft copolymers were characterised by elemental analysis, infrared and 13C NMR spectroscopy, rheological studies, differential scanning calorimetry and thermogravimetric analysis. Comparisons amongst grafting parameters of the reaction of various natural polysaccharides with polyacrylamide (PAM) were carried out. High percentages of acrylamide conversion (%C) and grafting efficiency (%E) were obtained for cashew gum (CG), even with a low acrylamide/gum ratio. All copolymers had intrinsic viscosity and thus the hydrodynamic volume much higher than the CG value and closer to the PAM. The CG-g-PAM solution had an absolute viscosity at 2.5% concentration (wt./vol.) up to 33 and 3.3 times the CG and PAM values, respectively. Grafting of PAM chains onto the polysaccharide enhances its thermal stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号