首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The serine protease factor Xa (FXa) is a key enzyme in the blood coagulation cascade, acting at the convergent point of the extrinsic and intrinsic pathways. The serine protease factor Xa (FXa) is a key enzyme in the blood coagulation cascade, acting at the convergent point of the extrinsic and intrinsic pathways. In our search for Fxa inhibitors as novel anticoagulants we identified the active isomer of the published FXa inhibitor, 2,7-bis-(4-amidinobenzilidine)-cycloheptan-l-one (BABCH), as the (Z, Z) isomer (ZK-805412, FXa Ki=0.66 nM). This photochemically labile (Z, Z) isomer has served as a conformationally rigid template for the development of distinct classes of potent, selective and orally active FXa inhibitors. Template evolution, in vitro SAR studies as well as our efforts to optimize in vivo parameters will be discussed.  相似文献   

2.
Factor VIII is a critical member of the blood coagulation cascade. It binds to the membrane surfaces of activated platelets at the site of vascular injury via a highly specific interaction between factor VIII's carboxy-terminal C2 domain and their phosphatidylserine-rich lipid bilayer. We have identified small-molecule inhibitors of factor VIII's membrane binding activity that have IC50 values as low as 2.5 microM. This interaction is approximately 10(3)-fold tighter than that of free o-phospho-L-serine. These compounds also inhibit factor VIII-dependent activation of factor X, indicating that disruption of membrane lipid binding leads to inhibition of the intrinsic coagulation pathway. The tightest binding inhibitor is specific and does not prevent membrane binding by the closely related coagulation factor V. These results indicate that this and related compounds may be used as leads to develop novel antithrombotic agents.  相似文献   

3.
In blood coagulation, circulating platelets and coagulation factors are crucial for the primary process because thrombi are generated by fibrin clotting with fibrinogen, thrombin, FXIIIa, and platelet activation. Therefore, strategies to reduce the activity of key coagulation factors, or interfere with their functions and delay the activation of platelets can be used as important tools to suppress excessive blood clot formation and platelet hyperactivation. This study examined the antithrombotic activity and hematological toxicity of PA, IVA, and 4-HA isolated from M. tricuspidata (Carr.) Bur in several in vitro experiments and inhibitor assays. We found that PA, IVA, and 4-HA attenuated the formation of fibrin polymers/clots and degraded the blood clots. These compounds inhibited the activities of procoagulant proteases and fibrinoligase, and prolonged the coagulation time. There was a significant reduction in platelet function and ATP or serotonin levels in thrombin-activated platelets. An inhibitor study showed that PA exhibited a mixed inhibition type for thrombin, an uncompetitive inhibition type for FXa, and a non-competitive inhibition type for FXIIIa and IVA, while 4-HA exhibited an uncompetitive inhibition type for thrombin and non-competitive inhibition type for FXa and FXIIIa. These three compounds (up to 50 μg/mL) were not toxic to blood cells.  相似文献   

4.
The present work investigates Ca2+‐crosslinked nanofibrillated cellulose hydrogels as potential hemostatic wound dressings by studying core interactions between the materials and a central component of wounds and wound healing—the blood. Hydrogels of wood‐derived anionic nanofibrillated cellulose (NFC) and NFC hydrogels that incorporate kaolin or collagen are studied in an in vitro whole blood model and with platelet‐free plasma assays. The evaluation of thrombin and factor XIIa formation, platelet reduction, and the release of activated complement system proteins, shows that the NFC hydrogel efficiently triggered blood coagulation, with a rapid onset of clot formation, while displaying basal complement system activation. By using the NFC hydrogel as a carrier of kaolin, the onset of hemostasis is further boosted, while the NFC hydrogel containing collagen exhibits blood activating properties comparable to the anionic NFC hydrogel. The herein studied NFC hydrogels demonstrate great potential for being part of advanced wound healing dressings that can be tuned to target certain wounds (e.g., strongly hemorrhaging ones) or specific phases of the wound healing process for optimal wound management.  相似文献   

5.
We present the search for a new model of -factor XIIa, a blood coagulation enzyme, with an unknown experimental 3D-structure. We decided to build not one but three different models using different homologous proteins as well as different techniques and different modellers. Additional studies, including extensive molecular dynamics simulations on the solvated state, allowed us to draw several conclusions concerning homology modelling, in general, and -factor XIIa, in particular.  相似文献   

6.
Activated protein C (APC), thrombin, and factor (f) Xa are vitamin K-dependent serine proteases that are key factors in blood coagulation. Moreover, they play important roles in inflammation, apoptosis, fibrosis, angiogenesis, and viral infections. Abnormal activity of these coagulation factors has been related to multiple conditions, such as bleeding and thrombosis, Alzheimer''s disease, sepsis, multiple sclerosis, and COVID-19. The individual activities of APC, thrombin, and fXa in coagulation and in various diseases are difficult to establish since these proteases are related and have similar substrate preferences. Therefore, the development of selective chemical tools that enable imaging and discrimination between coagulation factors in biological samples may provide better insight into their roles in various conditions and potentially aid in the establishment of novel diagnostic tests. In our study, we used a large collection of unnatural amino acids, and this enabled us to extensively explore the binding pockets of the enzymes'' active sites. Based on the specificity profiles obtained, we designed highly selective substrates, inhibitors, and fluorescent activity-based probes (ABPs) that were used for fast, direct, and simultaneous detection of APC, thrombin, and fXa in human plasma.

Using a collection of natural and unnatural amino acids, we synthesized a set of fluorescent activity-based probes for the fast, direct, and simultaneous detection of coagulation factors in human plasma.  相似文献   

7.
李梦瑶  蔡志强  侯玲  李帅 《合成化学》2020,28(4):346-359
以达比加群酯为代表的Ⅱa因子抑制剂和以利伐沙班为代表的Xa因子抑制剂在抗凝血药物中起到了重要作用。本文综述了已上市的新型小分子抗凝血药物的的合成、作用机制及其构效关系,并对其进行了深入分析,同时对此类药物的发展趋势和前景进行了展望。  相似文献   

8.
Protein-ligand interaction fingerprints have been used to postprocess docking poses of three ligand data sets: a set of 40 low-molecular-weight compounds from the Protein Data Bank, a collection of 40 scaffolds from pharmaceutically relevant protein ligands, and a database of 19 scaffolds extracted from true cdk2 inhibitors seeded in 2230 scaffold decoys. Four popular docking tools (FlexX, Glide, Gold, and Surflex) were used to generate poses for ligands of the three data sets. In all cases, scoring by the similarity of interaction fingerprints to a given reference was statistically superior to conventional scoring functions in posing low-molecular-weight fragments, predicting protein-bound scaffold coordinates according to the known binding mode of related ligands, and screening a scaffold library to enrich a hit list in true cdk2-targeted scaffolds.  相似文献   

9.
In this investigation, we describe the discovery of novel potent Pim-1 inhibitors by employing a proposed hierarchical multistage virtual screening (VS) approach, which is based on support vector machine-based (SVM-based VS or SB-VS), pharmacophore-based VS (PB-VS), and docking-based VS (DB-VS) methods. In this approach, the three VS methods are applied in an increasing order of complexity so that the first filter (SB-VS) is fast and simple, while successive ones (PB-VS and DB-VS) are more time-consuming but are applied only to a small subset of the entire database. Evaluation of this approach indicates that it can be used to screen a large chemical library rapidly with a high hit rate and a high enrichment factor. This approach was then applied to screen several large chemical libraries, including PubChem, Specs, and Enamine as well as an in-house database. From the final hits, 47 compounds were selected for further in vitro Pim-1 inhibitory assay, and 15 compounds show nanomolar level or low micromolar inhibition potency against Pim-1. In particular, four of them were found to have new scaffolds which have potential for the chemical development of Pim-1 inhibitors.  相似文献   

10.
Persulfated derivatives of natural polyhydroxy compounds, such as lignans secoisolariciresinol, and isolariciresinol, flavonoid dihydroquercetin, and myo-inositol, have been synthesized. The ability of these compounds to inhibit the intrinsic pathway of blood coagulation (APTT-test) and to reduce the activity of coagulation factor Xa in the presence of antithrombin(III) has been studied.  相似文献   

11.
The replacement of hydroxyl groups by fluorine atoms on hexopyranoside scaffolds may allow access to invaluable tools for studying various biochemical processes. As part of ongoing activities toward the preparation of fluorinated carbohydrates, a systematic investigation involving the synthesis and biological evaluation of a series of mono- and polyfluorinated galactopyranosides is described. Various monofluorogalactopyranosides, a trifluorinated, and a tetrafluorinated galactopyranoside have been prepared using a Chiron approach. Given the scarcity of these compounds in the literature, in addition to their synthesis, their biological profiles were evaluated. Firstly, the fluorinated compounds were investigated as antiproliferative agents using normal human and mouse cells in comparison with cancerous cells. Most of the fluorinated compounds showed no antiproliferative activity. Secondly, these carbohydrate probes were used as potential inhibitors of galactophilic lectins. The first transverse relaxation-optimized spectroscopy (TROSY) NMR experiments were performed on these interactions, examining chemical shift perturbations of the backbone resonances of LecA, a virulence factor from Pseudomonas aeruginosa. Moreover, taking advantage of the fluorine atom, the 19F NMR resonances of the monofluorogalactopyranosides were directly monitored in the presence and absence of LecA to assess ligand binding. Lastly, these results were corroborated with the binding potencies of the monofluorinated galactopyranoside derivatives by isothermal titration calorimetry experiments. Analogues with fluorine atoms at C-3 and C-4 showed weaker affinities with LecA as compared to those with the fluorine atom at C-2 or C-6. This research has focused on the chemical synthesis of “drug-like” low-molecular-weight inhibitors that circumvent drawbacks typically associated with natural oligosaccharides.  相似文献   

12.
Human blood coagulation factor XI (FXI) is a key enzyme in the amplification phase of blood coagulation cascade,and is recognized as an important target for anti-coagulant deve-lopment in recent years.We designed a new mutant form of FXIa catalytic domain rhFXI 370~607 (N73Q-N113Q-C123S),and report here the facile preparation,protein crystallization,and crystal structure of this protein.We highlight a few unique structural features of FXIa after comparison with the trypsin family serine proteases at sequence and structural levels.This work provides a foundation to develop new small molecular FXIa inhibitors with increased potency and specificity.  相似文献   

13.
Factor Xa inhibitors are innovative anticoagulant agents that provide a better safety/efficacy profile compared to other anticoagulative drugs. A chemical feature-based modeling approach was applied to identify crucial pharmacophore patterns from 3D crystal structures of inhibitors bound to human factor Xa (Pdb entries 1fjs, 1kns, 1eqz) using the software LIGANDSCOUT and CATALYST. The complex structures were selected regarding the criteria of high inhibitory potency (i.e. all ligands show K(i) values against factor Xa in the subnanomolar range) and good resolution (i.e. at least 2.2 A) in order to generate selective and high quality pharmacophore models. The resulting chemical-feature based hypotheses were used for virtual screening of commercial molecular databases such as the WDI database. Furthermore, a ligand-based molecular modeling approach was performed to obtain common-feature hypotheses that represent the relevant chemical interactions between 10 bioactive factor Xa inhibitors and the protein, respectively. In a next step a virtual combinatorial library was designed in order to generate new compounds with similar chemical and spatial properties as known inhibitors. The software tool ILIB DIVERSE was used for this procedure in order to provide new scaffolds of this group of anticoagulants. Finally we present the combination of these two techniques, hence virtual screening was performed with selective pharmacophore models in a focused virtual combinatorial database. De novo derived molecular scaffolds that were able to adequately satisfy the pharmacophore criteria are revealed and are promising templates for candidates for further development.  相似文献   

14.
15.
3-Hydroxy-3-methylglutaryl-coenzyme A reductase (HMGR) catalyzes the formation of mevalonate. In many classes of organisms, this is the committed step leading to the synthesis of essential compounds, such as cholesterol. However, a high level of cholesterol is an important risk factor for coronary heart disease, for which an effective clinical treatment is to block HMGR using inhibitors like statins. Recently the structures of catalytic portion of human HMGR complexed with six different statins have been determined by a delicate crystallography study (Istvan and Deisenhofer Science 2001, 292, 1160-1164), which established a solid basis of structure and mechanism for the rational design, optimization, and development of even better HMGR inhibitors. In this study, three-dimensional quantitative structure-activity relationship (3D QSAR) with comparative molecular field analysis (CoMFA) was performed on a training set of up to 35 statins and statin-like compounds. Predictive models were established by using two different ways: (1) Models-fit, obtained by SYBYL conventional fit-atom molecular alignment rule, has cross-validated coefficients (q2) up to 0.652 and regression coefficients (r2) up to 0.977. (2) Models-dock, obtained by FlexE by docking compounds into the HMGR active site, has cross-validated coefficients (q2) up to 0.731 and regression coefficients (r2) up to 0.947. These models were further validated by an external testing set of 12 statins and statin-like compounds. Integrated with CoMFA 3D QSAR predictive models, molecular surface property (electrostatic and steric) mapping and structure-based (both ligand and receptor) virtual screening have been employed to explore potential novel hits for the HMGR inhibitors. A representative set of eight new compounds of non-statin-like structures but with high pIC(50) values were sorted out in the present study.  相似文献   

16.
The enzyme β-secretase-1 is responsible for the cleavage of the amyloid precursor protein, a vital step in the process of the formation of amyloid-β peptides which are known to lead to neurodegeneration causing Alzheimer’s disease. Challenges associated with toxicity and blood brain permeation inability of potential inhibitors, continue to evade a successful therapy, thus demanding the search and development of highly active and effective inhibitors. Towards these efforts, we used a ligand based pharmacophore model generation from a dataset of known inhibitors whose activities against β-secretase hovered in the nano molar range. The identified 5 feature pharmacophore model, AHHPR, was validated via three dimensional quantitative structure activity relationship as indicated by r2, q2 and Pearson R values of 0.9013, 0.7726 and 0.9041 respectively. For a dataset of compounds with nano molar activity, the important pharmacophore features present in the current model appear to be similar with those observed in the models resulting from much wider activity range of inhibitors. Virtual screening of the ChemBridge CNS-Set™, a database having compounds with a better suitability for central nervous system based disorders followed by docking and analysis of the ligand protein interactions resulted in the identification of eight prospective compounds with considerable diversity. The current pharmacophore model can thus be useful for the identification, design and development of potent β-secretase inhibitors which by optimization can be potential therapeutics for Alzheimer’s disease.  相似文献   

17.
袁东峰  周颐  吴和珍  周珊珊 《化学通报》2022,85(11):1376-1386
本文选取了52个对Janus激酶2(JAK2)有抑制作用的小分子化合物,分别使用3D-QSAR中的CoMFA和CoMSIA方法构建了两个可靠的、具有预测能力的模型,并利用分子对接分析数据集化合物与JAK2蛋白的相互作用,表明化合物主要通过氢键和范德华作用与JAK2靶蛋白结合。根据3D-QSAR模型的分析结果,设计了40个化合物,利用构建的模型预测其抑制活性;使用软件预测了化合物的药代动力学(ADME)参数,开展分子对接模拟,最终选择化合物D01和D22与JAK2靶蛋白进行了分子动力学模拟研究,结果显示两个复合物结合构象稳定,与分子对接结果趋势一致。本研究的结果可以为JAK2抑制剂的研发提供一些新的思路,为临床开发此类药物提供理论支撑。  相似文献   

18.
Cell division (mitosis) is one of the basic requirements for multicellular oranisms. The capability of a cell to replicate enables a complex assembly to be created. Faulty regulation of the control mechanism in the cell cycle leads to an excessive cell proliferation and is the cause of cancer. The key position of the cyclin-dependent kinases (CDKs) and their direct partners, as well as the fact that the majority of malign illnesses show defects in at least one of these key players of the cell cycle, is of great interest for the development of low-molecular-weight CDK inhibitors. In this Review an overview of the different structural classes of ATP-competitive inhibitors of CDKs are given, whose devlopment was aimed at battling cancer. The Review shows how far the development of selective CDK inhibitors has progressed and to what extent the expectations for such drugs have so far been fulfilled.  相似文献   

19.
The blood coagulation cascade can be considered as a system of well-orchestrated protein activation reactions involving and leading to the formation of large macromolecular assemblies. NMR investigations performed during the last six years have focused on the structural, motional and binding properties of some protein domains and interfaces critical for the formation of these protein complexes, outlining sophisticated intermolecular adaptations. The studied protein domains are either single molecules or covalently-linked heterodimers of the epidermal growth factor (EGF) homology domains, calcium-binding EGF domains and gamma-carboxyglutamic(Gla)-containing domains responsible for calcium-dependent binding to cell membranes. The characterized binding interfaces have included those between thrombin and fibrinogen, between thrombin and thrombomodulin, between factor VIIIa and the cell membrane, between tissue factor and factor VIIa, and most recently between factor Va and prothrombin. The obtained results indicate that the regulation of blood coagulation by protein and low molecular weight cofactors may involve a significant degree of protein folding transitions with changes in molecular and conformational motions coupled to enzymatic activities. This new level of complexity of the molecular processes controlling coagulation may lead to novel strategies for the development of more effective therapeutic anticoagulants.  相似文献   

20.
Xu S  Pan C  Hu L  Zhang Y  Guo Z  Li X  Zou H 《Electrophoresis》2004,25(21-22):3669-3676
Desorption/ionization on silicon mass spectrometry (DIOS-MS) is a matrix-free technique that allows for the direct desorption/ionization of low-molecular-weight compounds with little or no fragmentation of analytes. This technique has a relatively high tolerance for contaminants commonly found in biological samples. DIOS-MS has been applied to determine the activity of immobilized enzymes on the porous silicon surface. Enzyme activities were also monitored with the addition of a competitive inhibitor in the substrate solution. It is demonstrated that this method can be applied to the screening of enzyme inhibitors. Furthermore, a method for peptide mapping analysis by in situ digestion of proteins on the porous silicon surface modified by trypsin, combined with matrix-assisted laser desorption/ionization-time of flight-MS has been developed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号