首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to efficiently remove phosphorus, thermodynamic equilibrium diagrams of the P-H2O system and P-M-H2O system (M stands for Fe, Al, Ca, Mg) were analyzed by software from Visual MINTEQ to identify the existence of phosphorus ions and metal ions as pH ranged from 1 to 14. The results showed that the phosphorus ions existed in the form of H3PO4, H2PO4, HPO42−, and PO43−. Among them, H2PO4 and HPO42− were the main species in the acidic medium (99% at pH = 5) and alkaline medium (97.9% at pH = 10). In the P-Fe-H2O system ((P) = 0.01 mol/L, (Fe3+) = 0.01 mol/L), H2PO4 was transformed to FeHPO4+ at pH = 0–7 due to the existence of Fe3+ and then transformed to HPO42− at pH > 6 as the Fe3+ was mostly precipitated. In the P-Ca-H2O system ((P) = 0.01 mol/L, (Ca2+) = 0.015 mol/L), the main species in the acidic medium was CaH2PO4+ and HPO42−, and then transformed to CaPO4 at pH > 7. In the P-Mg-H2O system ((P) = 0.01 mol/L, (Mg2+) = 0.015 mol/L), the main species in the acidic medium was H2PO4 and then transformed to MgHPO4 at pH = 5–10, and finally transformed to MgPO4 as pH increased. The verification experiments (precipitation experiments) with single metal ions confirmed that the theoretical analysis could be used to guide the actual experiments.  相似文献   

2.
High proton conducting electrolytes with mechanical moldability are a key material for energy devices. We propose an approach for creating a coordination polymer (CP) glass from a protic ionic liquid for a solid-state anhydrous proton conductor. A protic ionic liquid (dema)(H2PO4), with components which also act as bridging ligands, was applied to construct a CP glass (dema)0.35[Zn(H2PO4)2.35(H3PO4)0.65]. The structural analysis revealed that large Zn–H2PO4/H3PO4 coordination networks formed in the CP glass. The network formation results in enhancement of the properties of proton conductivity and viscoelasticity. High anhydrous proton conductivity (σ = 13.3 mS cm−1 at 120 °C) and a high transport number of the proton (0.94) were achieved by the coordination networks. A fuel cell with this CP glass membrane exhibits a high open-circuit voltage and power density (0.15 W cm−2) under dry conditions at 120 °C due to the conducting properties and mechanical properties of the CP glass.

A proton-conducting coordination polymer glass derived from a protic ionic liquid works as a moldable solid electrolyte and the anhydrous fuel cell showed IV performance of 0.15 W cm−2 at 120 °C.  相似文献   

3.
The new symmetric acyclic N,N’-bis(1-pyrenyl) squaramide (H2L) functionalized with the pyrene moiety as a fluorogenic fragment has been designed and its ability to selectively detect specific anions and metals investigated. H2L selectively binds Cl both in solution (DMSO 0.5% H2O and MeCN) and in the solid state, and allows to selectively detect Cu2+ in MeCN with the formation of a 2:1 metal-receptor complex, with a green intense emission appreciable by naked eye under the UV lamp. The H2L copper complex preserves its emission properties in the presence of Cl. The addition of basic anions (OH, CN, and F) up to 10 equivalents caused the deprotonation of the squaramide NHs and a dramatic change of the emission properties of the H2L copper complex.  相似文献   

4.
Background: Metabolic and physicochemical evaluation is recommended to manage the condition of patients with nephrolithiasis. The estimation of the saturation state (β values) is often included in the diagnostic work-up, and it is preferably performed through calculations. The free concentrations of constituent ions are estimated by considering the main ionic soluble complexes. It is contended that this approach is liable to an overestimation of β values because some complexes may be overlooked. A recent report found that β values could be significantly lowered upon the addition of new and so far neglected complexes, [Ca(PO4)Cit]4− and [Ca2H2(PO4)2]. The aim of this work was to assess whether these complexes can be relevant to explaining the chemistry of urine. Methods: The Ca–phosphate–citrate aqueous system was investigated by potentiometric titrations. The stability constants of the parent binary complexes [Cacit] and [CaPO4], and the coordination tendency of PO43− toward [Ca(cit)] to form the ternary complex, were estimated. βCaOx and βCaHPO4 were then calculated on 5 natural urines by chemical models, including or not including the [CaPO4] and [Ca(PO4)cit]4− species. Results: Species distribution diagrams show that the [Ca(PO4)cit]4− species was only noticeable at pH > 8.5 and below 10% of the total calcium. β values estimated on natural urine were slightly lowered by the formation of [CaPO4] species, whereas [Ca(PO4)cit]4− results were irrelevant. Conclusions: While [CaPO4] species have an impact on saturation levels at higher pHs, the existence of ternary complex and of the dimer is rejected.  相似文献   

5.
Boontana Wannalerse 《Tetrahedron》2008,64(46):10619-10624
Novel anion receptors and sensors, HBIMANQ and BIMANQ fabricated from the imidazolole unit and anthraquinone moieties were synthesized. 1H NMR spectroscopy and UV-vis titrations in DMSO-d6 and DMSO, respectively, showed that both receptors underwent deprotonation at the NH- moiety of the amide-anthraquinone unit in the presence of basic anions such as F and AcO. These phenomena gave a dramatic color change due to charge transfer transition corresponding to the shift of λmax from 371 nm to 489 nm. Redox chemistry of HBIMANQ and BIMANQ in the presence of anions (F, Cl, AcO, BzO, and H2PO4) using cyclic voltammetry showed the different CV responses upon addition of various anions. In the case of HBIMANQ with various anions, the CV changes are dependent on the basic strength of anions in order of F>AcO, BzO>H2PO4>Cl, Br. Interestingly, the CV responses of BIMANQ with H2PO4 exhibited the most significant changes. BIMANQ, thus, has an excellent electrochemical selectivity toward H2PO4.  相似文献   

6.
The aim of the work was to prepare a simple but reliable HPLC-UV method for the routine monitoring of mycophenolic acid (MPA). Sample preparation was based on plasma protein precipitation with acetonitrile. The isocratic separation of MPA and internal standard (IS) fenbufen was made on Supelcosil LC-CN column (150 × 4.6 mm, 5 µm) using a mobile phase: CH3CN:H2O:0.5M KH2PO4:H3PO4 (260:700:40:0.4, v/v). UV detection was set at 305 nm. The calibration covered the MPA concentration range: 0.1–40 µg/mL. The precision was satisfactory with RSD of 0.97–7.06% for intra-assay and of 1.92–5.15% for inter-assay. The inaccuracy was found between −5.72% and +2.96% (+15.40% at LLOQ) and between −8.82% and +5.31% (+19.00% at LLOQ) for intra- and inter-assay, respectively, fulfilling acceptance criteria. After a two-year period of successful application, the presented method has been retrospectively calibrated using the raw data disregarding the IS in the calculations. The validation and stability parameters were similar for both calculation methods. MPA concentrations were recalculated and compared in 1187 consecutive routine therapeutic drug monitoring (TDM) trough plasma samples from mycophenolate-treated patients. A high agreement (r2 = 0.9931, p < 0.0001) of the results was found. A Bland–Altman test revealed a mean bias of −0.011 μg/mL (95% CI: −0.017; −0.005) comprising −0.14% (95% Cl: −0.39; +0.11), whereas the Passing–Bablok regression was y = 0.986x + 0.014. The presented method can be recommended as an attractive analytical tool for medical (hospital) laboratories equipped with solely basic HPLC apparatus. The procedure can be further simplified by disapplying an internal standard while maintaining appropriate precision and accuracy of measurements.  相似文献   

7.
The self-assembly of 2,6-diformyl-4-methylphenol (DFMP) and 1-amino-2-propanol (AP)/2-amino-1,3-propanediol (APD) in the presence of copper(II) ions results in the formation of six new supramolecular architectures containing two versatile double Schiff base ligands (H3L and H5L1) with one-, two-, or three-dimensional structures involving diverse nuclearities: tetranuclear [Cu4(HL2−)2(N3)4]·4CH3OH·56H2O (1) and [Cu4(L3−)2(OH)2(H2O)2] (2), dinuclear [Cu2(H3L12−)(N3)(H2O)(NO3)] (3), polynuclear {[Cu2(H3L12−)(H2O)(BF4)(N3)]·H2O}n (4), heptanuclear [Cu7(H3L12−)2(O)2(C6H5CO2)6]·6CH3OH·44H2O (5), and decanuclear [Cu10(H3L12−)4(O)2(OH)2(C6H5CO2)4] (C6H5CO2)2·20H2O (6). X-ray studies have revealed that the basic building block in 1, 3, and 4 is comprised of two copper centers bridged through one μ-phenolate oxygen atom from HL2− or H3L12−, and one μ-1,1-azido (N3) ion and in 2, 5, and 6 by μ-phenoxide oxygen of L3− or H3L12− and μ-O2− or μ3-O2− ions. H-bonding involving coordinated/uncoordinated hydroxy groups of the ligands generates fascinating supramolecular architectures with 1D-single chains (1 and 6), 2D-sheets (3), and 3D-structures (4). In 5, benzoate ions display four different coordination modes, which, in our opinion, is unprecedented and constitutes a new discovery. In 1, 3, and 5, Cu(II) ions in [Cu2] units are antiferromagnetically coupled, with J ranging from −177 to −278 cm−1.  相似文献   

8.
A diimine ligand having two [2.2]paracyclophanyl substituents at the N atoms (L1) was prepared from the reaction of amino[2.2]paracyclophane with acenaphtenequinone. The ligand reacts with NiBr2(dme) (dme: 1,2-dimethoxyethane) to form the dibromonickel complex with (R,R) and (S,S) configuration, NiBr2(L1). The structure of the complex was confirmed by X-ray crystallography. NiBr2(L1) catalyzes oligomerization of ethylene in the presence of methylaluminoxane (MAO) co-catalyst at 10–50 °C to form a mixture of 1- and 2-butenes after 3 h. The reactions for 6 h and 8 h at 25 °C causes further increase of 2-butene formed via isomerization of 1-butene and formation of hexenes. Reaction of 1-hexene catalyzed by NiBr2(L1)–MAO produces 2-hexene via isomerization and C12 and C18 hydrocarbons via oligomerization. Consumption of 1-hexene of the reaction obeys first-order kinetics. The kinetic parameters were obtained to be ΔG = 93.6 kJ mol−1, ΔH = 63.0 kJ mol−1, and ΔS = −112 J mol−1deg−1. NiBr2(L1) catalyzes co-dimerization of ethylene and 1-hexene to form C8 hydrocarbons with higher rate and selectivity than the tetramerization of ethylene.  相似文献   

9.
Benzophenone-3, fipronil and propylparaben are micropollutants that are potential threats to ecosystems and have been detected in aquatic environments. However, studies involving the investigation of new technologies aiming at their elimination from these matrices, such as advanced oxidation processes, remain scarce. In this study, different iron complexes (FeCit, FeEDTA, FeEDDS and FeNTA) were evaluated for the degradation of a mixture of these micropollutants (100 µg L−1 each) spiked in municipal wastewater treatment plant (MWWTP) effluent at pH 6.9 by solar photo-Fenton. Operational parameters (iron and H2O2 concentration and Fe/L molar ratio) were optimized for each complex. Degradation efficiencies improved significantly by increasing the concentration of iron complexes (1:1 Fe/L) from 12.5 to 100 µmol L−1 for FeEDDS, FeEDTA and FeNTA. The maximum degradation reached with FeCit for all iron concentrations was limited to 30%. Different Fe/L molar ratios were required to maximize the degradation efficiency for each ligand: 1:1 for FeNTA and FeEDTA, 1:3 for FeEDDS and 1:5 for FeCit. Considering the best Fe/L molar ratios, higher degradation rates were reached using 5.9 mmol L−1 H2O2 for FeNTA and FeEDTA compared to 1.5 and 2.9 mmol L−1 H2O2 for FeEDDS and FeCit, respectively. Acute toxicity to Canton S. strain D. melanogaster flies reduced significantly after treatment for all iron complexes, indicating the formation of low-toxicity by-products. FeNTA was considered the best iron complex source in terms of the kinetic constant (0.10 > 0.063 > 0.051 > 0.036 min−1 for FeCit, FeNTA, FeEDTA and FeEDDS, respectively), organic carbon input and cost-benefit (USD 327 m−3 > USD 20 m−3 > USD 16 m−3 > USD 13 m−3 for FeEDDS, FeCit, FeEDTA and FeNTA, respectively) when compared to the other tested complexes.  相似文献   

10.
Highly proton-conductive elastic composites have been successfully prepared from H3PO4-doped silica gel and a styrene-ethylene-butylene-styrene (SEBS) block elastic copolymer. Ionic conductivities of the composites depended on the concentration of H3PO4 and the heat treatment temperature of the H3PO4-doped silica gel. It was found that H3PO4 added is present mainly as free orthophosphoric acid in the silica gel. The composite composed of H3PO4-doped silica gel with a molar ratio of H3PO4/SiO2 = 0.5 heat-treated at temperatures below 200°C and SEBS elastomer in 5 mass% showed a high conductivity of 10–5 S cm–1 at 25°C in an dry N2 atmosphere. The water adsorption during a storage in 25% relative humidity at room temperature for 1 day enhanced the ionic conductivities of composites by about one order of magnitude. Lower conductivities obtained in the composite with the H3PO4-doped silica gel heat-treated at 250°C for 1 h were due to the formation of crystalline Si3(PO4)4. The temperature dependence of conductivity of the composites was the Vogel-Tamman-Fulcher type, indicating that proton was transferred through a liquidlike phase formed in micropores of the H3PO4-doped silica gels. The temperature dependence of the modulus of the composite was similar to that of the SEBS elastomer. The thermoplastically deforming temperature of the composite was around 100°C, which was higher by 30°C than that of the SEBS elastomer.  相似文献   

11.
The carbon-carbon cross-coupling of phenyl s-tetrazine (Tz) units at their ortho-phenyl positions allows the formation of constrained bis(tetrazines) with original tweezer structures. In these compounds, the face-to-face positioning of the central tetrazine cores is reinforced by π-stacking of the electron-poor nitrogen-containing heteroaromatic moieties. The resulting tetra-aromatic structure can be used as a weak coordinating ligand with cationic silver. This coordination generates a set of bis(tetrazine)-silver(I) coordination complexes tolerating a large variety of counter anions of various geometries, namely, PF6, BF4, SbF6, ClO4, NTf2, and OTf. These compounds were characterized in the solid state by single-crystal X-ray diffraction (XRD) and diffuse reflectance spectroscopy, and in solution by 1H-NMR, mass spectrometry, electroanalysis, and UV-visible absorption spectrophotometry. The X-ray crystal structure of complexes {[Ag(3)][PF6]} (4) and {[Ag(3)][SbF6]} (6), where 3 is 3,3′-[(1,1′-biphenyl)-2,2′-diyl]-6,6′-bis(phenyl)-1,2,4,5-tetrazine, revealed the formation of 1D polymeric chains, characterized by an evolution to a large opening of the original tweezer and a coordination of silver(I) via two chelating nitrogen atom and some C=C π-interactions. Electrochemical and UV spectroscopic properties of the original tweezer and of the corresponding silver complexes are reported and compared. 1H-NMR titrations with AgNTf2 allowed the determination of the stoichiometry and apparent stability of two solution species, namely [Ag(3)]+ and [Ag(3)2]2+, that formed in CDCl3/CD3OD 2:1 v/v mixtures.  相似文献   

12.
The exploration of the ionic liquids’ mechanism of action on nucleobase’s structure and properties is still limited. In this work, the binding model of the 1-alkyl-3-methylimidazolium bromide ([Cnmim]Br, n = 2, 4, 6, 8, 10) ionic liquids to the thymine (T) was studied in a water environment (PCM) and a microhydrated surroundings (PCM + wH2O). Geometries of the mono-, di-, tri-, and tetra-ionic thymine (T-wH2O-y[Cnmim]+-xBr, w = 5~1 and x + y = 0~4) complexes were optimized at the M06-2X/6-311++G(2d, p) level. The IR and UV-Vis spectra, QTAIM, and NBO analysis for the most stable T-4H2O-Br-1, T-3H2O-[Cnmim]+-Br-1, T-2H2O-[Cnmim]+-2Br-1, and T-1H2O-2[Cnmim]+-2Br-1 hydrates were presented in great detail. The results show that the order of the arrangement stability of thymine with the cations (T-[Cnmim]+) by PCM is stacking > perpendicular > coplanar, and with the anion (T-Br) is front > top. The stability order for the different microhydrates is following T-5H2O-1 < T-4H2O-Br-1 < T-3H2O-[Cnmim]+-Br-1 < T-2H2O-[Cnmim]+-2Br-1 < T-1H2O-2[Cnmim]+-2Br-1. A good linear relationship between binding EB values and the increasing number (x + y) of ions has been found, which indicates that the cooperativity of interactions for the H-bonding and π-π+ stacking is varying incrementally in the growing ionic clusters. The stacking model between thymine and [Cnmim]+ cations is accompanied by weaker hydrogen bonds which are always much less favorable than those in T-xBr complexes; the same trend holds when the clusters in size grow and the length of alkyl chains in the imidazolium cations increase. QTAIM and NBO analytical methods support the existence of mutually reinforcing hydrogen bonds and π-π cooperativity in the systems.  相似文献   

13.
The physical gelation of the solutions of atactic polystyrene (aPS) in carbon disulfide (CS2) is studied by the excess of anisotropic light scattering δHv and by the Theological properties. An abrupt jump of δHv at gelation temperature shows that a part of the chains are stiffened upon gelation. This effect which is independent of aPS molecular weight strongly decreases with concentration. It is well correlated with an abrupt change of the plateau modulus GN which indicates the formation of additional entanglements in the gel phase with respect to the sol. The compatibility of these abrupt jumps with the thermodynamic theories used to interpret the concentration and molecular-weight dependence of the gelation temperature is discussed.  相似文献   

14.
Despite longstanding interest in the mechanism of salt dissolution in aqueous media, a molecular level understanding remains incomplete. Here, cryogenic ion trap vibrational action spectroscopy is combined with electronic structure calculations to track salt hydration in a gas phase model system one water molecule at a time. The infrared photodissociation spectra of microhydrated lithium dihalide anions [LiXX′(H2O)n] (XX′ = I2, ClI and Cl2; n = 1–3) in the OH stretching region (3800–2800 cm−1) provide a detailed picture of how anion polarizability influences the competition among ion–ion, ion–water and water–water interactions. While exclusively contact ion pairs are observed for n = 1, the formation of solvent-shared ion pairs, identified by markedly red-shifted OH stretching bands (<3200 cm−1), originating from the bridging water molecules, is favored already for n = 2. For n = 3, Li+ reaches its maximum coordination number of four only in [LiI2(H2O)3], in accordance with the hard and soft Lewis acid and base principle. Water–water hydrogen bond formation leads to a different solvent-shared ion pair motif in [LiI2(H2O)3] and network formation even restabilizes the contact ion pair motif in [LiCl2(H2O)3]. Structural assignments are exclusively possible after the consideration of anharmonic effects. Molecular dynamics simulations confirm that the significance of large amplitude motion (of the water molecules) increases with increasing anion polarizability and that needs to be considered already at cryogenic temperatures.

Infrared spectroscopy of microhydrated salt clusters provides a detailed picture of how anion polarizability influences the interactions between ions and water.  相似文献   

15.
The present work introduces the series of thiacalix[4]arenes (H4L) bearing different upper-rim substituents (R = H, Br, NO2) for rational design of ligands providing an antenna-effect on the NIR Yb3+-centered luminescence of their Yb3+ complexes. The unusual inclusive self-assembly of H3L (Br) through Br…π interactions is revealed through single-crystal XRD analysis. Thermodynamically favorable formation of dimeric complexes [2Yb3+:2HL3−] leads to efficient sensitizing of the Yb3+ luminescence for H4L (Br, NO2), while poor sensitizing is observed for ligand H4L (H). X-ray analysis of the single crystal separated from the basified DMF solutions of YbCl3 and H4L(NO2) has revealed the transformation of the dimeric complexes into [4Yb3+:2L4−] ones with a cubane-like cluster structure. The luminescence characteristics of the complexes in the solutions reveal the peculiar antenna effect of H4L(R = NO2), where the triplet level at 567 nm (17,637 cm−1) arisen from ILCT provides efficient sensitizing of the Yb3+ luminescence.  相似文献   

16.
A terminal FeIIIOH complex, [FeIII(L)(OH)]2− (1), has been synthesized and structurally characterized (H4L = 1,2-bis(2-hydroxy-2-methylpropanamido)benzene). The oxidation reaction of 1 with one equiv. of tris(4-bromophenyl)ammoniumyl hexachloroantimonate (TBAH) or ceric ammonium nitrate (CAN) in acetonitrile at −45 °C results in the formation of a FeIIIOH ligand radical complex, [FeIII(L˙)(OH)] (2), which is hereby characterized by UV-visible, 1H nuclear magnetic resonance, electron paramagnetic resonance, and X-ray absorption spectroscopy techniques. The reaction of 2 with a triphenylcarbon radical further gives triphenylmethanol and mimics the so-called oxygen rebound step of Cpd II of cytochrome P450. Furthermore, the reaction of 2 was explored with different 4-substituted-2,6-di-tert-butylphenols. Based on kinetic analysis, a hydrogen atom transfer (HAT) mechanism has been established. A pKa value of 19.3 and a BDFE value of 78.2 kcal/mol have been estimated for complex 2.

One-electron oxidation of an FeIII–OH complex (1) results in the formation of a FeIII–OH ligand radical complex (2). Its reaction with (C6H5)3C˙ results in the formation of (C6H5)3COH, which is a functional mimic of compound II of cytochrome P450.  相似文献   

17.
In this study, the lactobacillus fermentation process of pomegranate (Punica granatum L.) peel and Schisandra chinensis (Turcz.) Baill (PP&SC) was optimized by using the response surface method (RSM) coupled with a Box-Behnken design. The optimum fermentation condition with the maximal yield of ellagic acid (99.49 ± 0.47 mg/g) was as follows: 1:1 (w:w) ratio of pomegranate peel to Schisandra chinensis, 1% (v:v) of strains with a 1:1 (v:v) ratio of Lactobacillus Plantarum to Streptococcus Thermophilus, a 37 °C fermentation temperature, 33 h of fermentation time, 1:20 (g:mL) of a solid–liquid ratio and 3 g/100 mL of a glucose dosage. Under these conditions, the achieved fermentation broth (FB) showed stronger free radical scavenging abilities than the water extract (WE) against the ABTS+, DPPH, OH and O2 radicals. The cytotoxicity and the protective effect of FB on the intracellular ROS level in HaCaT cells were further detected by the Cell Counting Kit-8 (CCK-8) assay. The results showed that FB had no significant cytotoxicity toward HaCaT cells when its content was no more than 8 mg/mL. The FB with a concentration of 8 mg/mL had a good protective effect against oxidative damage, which can effectively reduce the ROS level to 125.94% ± 13.46% (p < 0.001) compared with 294.49% ± 11.54% of the control group in H2O2-damaged HaCaT cells. The outstanding antioxidant ability and protective effect against H2O2-induced oxidative damage in HaCaT cells promote the potential for the FB of PP&SC as a functional raw material of cosmetics.  相似文献   

18.
Cisplatin and other metallodrugs have realised great success in clinical chemotherapeutic applications as anticancer drugs. However, severe toxicity to healthy cells and non-selectivity to cancer cells remains a challenge, warranting the further search for alternative agents. Herein, we report the anticancer potential of a series of complexes of the general formula [MCl(p-cym)(k2-N^N-L)]+ X and [MCl(Cp*)(k2-N^N-L)]+ X, where M is the metal centre (Ru(II), Os(II), Rh(III) or Ir(III)), L = 1-benzyl-4-pyridinyl-1-H-1,2,3-triazole for L1 and 1-picolyl-4-pyridinyl-1-H-1,2,3-triazole for L2 and X = Cl, BF4, BPh4. When evaluated for activity against some cancerous and non-cancerous cell lines (namely, HeLa, HEK293, A549 and MT4 cancer cells and the normal healthy kidney cells (BHK21)), most of the compounds displayed poor cytotoxicities against cancer cells except for complexes C2 ([RuCl(p-cym)(k2-N^N-L1)]+ BPh4, EC50 = 9–16 µM and SI = 14), C7 ([RuCl(p-cym)(k2-N^N-L2)]+ BPh4, EC50 = 17–53 µM and SI = 4) and C11 ([IrCl(Cp*)(k2-N^N-L2)]+ BF4, EC50 < 5 µM and SI > 10). Selected complexes C1 ([RuCl(p-cym)(k2-N^N-L1)]+ BF4), C5 ([IrCl(Cp*)(k2-N^N-L1)]+ BF4) and C11 showed significant interactions with model biomolecules such as guanosine-5′-monophosphate (5′-GMP), bovine serum albumin (BSA) and amino acids under physiological conditions, possibly through carbenylation and N-coordination with 5′-GMP, N-coordination with L-Histidine and L-proline. While the compounds showed good activities in reducing pyruvate to lactate, there was no direct correlation between catalytic transfer hydrogenation of pyruvate and the observed cytotoxic activities. As observed in this work, the marked influence of single atom replacement in ligand may provide a pivotal approach to improving the cytotoxicity and fine-tuning the selectivity to cancer cells.  相似文献   

19.
It was found, that the addition of silica gel to PCl3 prevents its oxidation and acts as an adsorbent of Pv impurities. The concentration of Pv impurities is diminished below 0,1% calculated as H3PO4. The velocity of purification depends on the kind of silica gel, on its amount and on the volume of the liquid above the adsorbent layer. For the purification of technical grade PCl3 with an impurity level below 1% H3PO4 the small pore or middle pore silica gel in amounts of 10% in relation to PCl3 may be used. In case of PCl3, oxidated to a level of 2.6% Pv, as H3PO4, the velocity of purification was higher for the middle pore silica gel. An attempt is made to explain the action of silica gel on theoretical backgrounds.  相似文献   

20.
Reaction of 2,2′-bipyridine (2,2′-bipy) or 1,10-phenantroline (phen) with [Mn(Piv)2(EtOH)]n led to the formation of binuclear complexes [Mn2(Piv)4L2] (L = 2,2′-bipy (1), phen (2); Piv is the anion of pivalic acid). Oxidation of 1 or 2 by air oxygen resulted in the formation of tetranuclear MnII/III complexes [Mn4O2(Piv)6L2] (L = 2,2′-bipy (3), phen (4)). The hexanuclear complex [Mn6(OH)2(Piv)10(pym)4] (5) was formed in the reaction of [Mn(Piv)2(EtOH)]n with pyrimidine (pym), while oxidation of 5 produced the coordination polymer [Mn6O2(Piv)10(pym)2]n (6). Use of pyrazine (pz) instead of pyrimidine led to the 2D-coordination polymer [Mn4(OH)(Piv)72-pz)2]n (7). Interaction of [Mn(Piv)2(EtOH)]n with FeCl3 resulted in the formation of the hexanuclear complex [MnII4FeIII2O2(Piv)10(MeCN)2(HPiv)2] (8). The reactions of [MnFe2O(OAc)6(H2O)3] with 4,4′-bipyridine (4,4′-bipy) or trans-1,2-(4-pyridyl)ethylene (bpe) led to the formation of 1D-polymers [MnFe2O(OAc)6L2]n·2nDMF, where L = 4,4′-bipy (9·2DMF), bpe (10·2DMF) and [MnFe2O(OAc)6(bpe)(DMF)]n·3.5nDMF (11·3.5DMF). All complexes were characterized by single-crystal X-ray diffraction. Desolvation of 11·3.5DMF led to a collapse of the porous crystal lattice that was confirmed by PXRD and N2 sorption measurements, while alcohol adsorption led to porous structure restoration. Weak antiferromagnetic exchange was found in the case of binuclear MnII complexes (JMn-Mn = −1.03 cm−1 for 1 and 2). According to magnetic data analysis (JMn-Mn = −(2.69 ÷ 0.42) cm−1) and DFT calculations (JMn-Mn = −(6.9 ÷ 0.9) cm−1) weak antiferromagnetic coupling between MnII ions also occurred in the tetranuclear {Mn4(OH)(Piv)7} unit of the 2D polymer 7. In contrast, strong antiferromagnetic coupling was found in oxo-bridged trinuclear fragment {MnFe2O(OAc)6} in 11·3.5DMF (JFe-Fe = −57.8 cm−1, JFe-Mn = −20.12 cm−1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号