首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Friedel–Crafts reaction between substituted indoles as nucleophiles with chalcones-based benzofuran and benzothiophene scaffolds was carried out by employing a highly efficient bimetallic iron–palladium catalyst system. This catalytic approach produced the desired bis-heteroaryl products with low catalyst loading, a simple procedure, and with acceptable yield. All synthesized indole scaffolds 3a–3s were initially evaluated for their cytotoxic effect against human fibroblast BJ cell lines and appeared to be non-cytotoxic. All non-cytotoxic compounds 3a–3s were then evaluated for their anticancer activities against cervical cancer HeLa, prostate cancer PC3, and breast cancer MCF-7 cell lines, in comparison to standard drug doxorubicin, with IC50 values 1.9 ± 0.4 µM, 0.9 ± 0.14 µM and 0.79 ± 0.05 µM, respectively, and appeared to be moderate to weak anticancer agents. Fluoro-substituted chalcone moiety-containing compounds, 3b appeared to be the most active member of the series against cervical HeLa (IC50 = 8.2 ± 0.2 µM) and breast MCF-7 cancer cell line (IC50 = 12.3 ± 0.04 µM), whereas 6-fluroindol-4-bromophenyl chalcone-containing compound 3e (IC50 = 7.8 ± 0.4 µM) appeared to be more active against PC3 prostate cancer cell line.  相似文献   

2.
An alkaloid compound from the hairy root culture of Eurycoma longifolia has been isolated and characterised as 9-methoxycanthin-6-one. The aims of these studies were to investigate the in vitro anti-cancer activities of 9-methoxycanthin-6-one against ovarian cancer (A2780, SKOV-3), breast cancer (MCF-7), colorectal cancer (HT29), skin cancer (A375) and cervical cancer (HeLa) cell lines by using a Sulphorhodamine B assay, and to evaluate the mechanisms of action of 9-methoxycanthin-6-one via the Hoechst 33342 assay and proteomics approach. The results had shown that 9-methoxycanthin-6-one gave IC50 values of 4.04 ± 0.36 µM, 5.80 ± 0.40 µM, 15.09 ± 0.99 µM, 3.79 ± 0.069 µM, 5.71 ± 0.20 µM and 4.30 ± 0.27 µM when tested in A2780, SKOV-3, MCF-7, HT-29, A375 and HeLa cell lines, respectively. It was found that 9-methoxycanthin-6-one induced apoptosis in a concentration dependent manner when analysed via the Hoechst 33342 assay. 9-methoxycanthine-6-one were found to affect the expressions of apoptotic-related proteins, that were proteins pyruvate kinase (PKM), annexin A2 (ANXA2), galectin 3 (LGAL3), heterogeneous nuclear ribonucleoprotein A1 (HNRNP1A1), peroxiredoxin 3 (PRDX3), and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) from the differential analysis of 2-DE profiles between treated and non-treated 9-methoxycanthine-6-one. Proteins such as acetyl-CoA acyltransferase 2 (ACAA2), aldehyde dehydrogenase 1 (ALDH1A1), capping protein (CAPG), eukaryotic translation elongation factor 1 (EEF1A1), malate dehydrogenase 2 (MDH2), purine nucleoside phosphorylase (PNP), and triosephosphate isomerase 1 (TPI1) were also identified to be associated with A2780 cell death induced by 9-methoxycanthine-6-one. These findings may provide a new insight on the mechanisms of action of 9-methoxycanthin-6-one in exerting its anti-cancer effects in vitro.  相似文献   

3.
A series of 3-ethyl(methyl)-2-thioxo-2,3-dihydrobenzo[g]quinazolines (1–17) were synthesized, characterized, and evaluated in vitro for their antiangiogenesis VEGFR-2-targeting, antiproliferative, and antiapoptotic activities against breast MCF-7 and liver HepG2 cells. Flow cytometry was used to determine cancer-cell cycle distributions, and apoptosis was detected using annexin-V-FITC (V) and propidium iodide (PI) dyes. Fluorescence microscopy, in combination with Hoechst staining was used to detect DNA fragmentation. Most of the tested benzo[g]quinazolines demonstrated promising activity (IC50 = 8.8 ± 0.5–10.9 ± 0.9 μM) and (IC50 = 26.0 ± 2.5–40.4 ± 4.1 μM) against MCF-7 and HepG2, respectively. Doxorubicin was used as a reference drug. Compounds 13–15 showed the highest activity against both cancer cell lines. Differential effects were detected by cell-cycle analysis, indicating similarities in the actions of 13 and 14 against both MCF7 and HepG2, involving the targeting of G1 and S phases, respectively. Compound 15 showed similar indices against both cells, indicating that its cytotoxicity toward the examined cancer cells could be unselective. Interestingly, 14 and 15 showed the highest apoptosis (30.76% and 25.30%, respectively) against MCF-7. The DNA fragmentation results agreed well with the apoptosis detected by flow cytometry. In terms of antiangiogenesis activity, as derived from VEGFR-2 inhibition, 13 and 15 were comparable to sorafenib and effected 1.5- and 1.4-fold inhibition relative to the standard sorafenib. A docking study was conducted to investigate the interaction between the synthesized benzo[g]quinazolines and the ATP-binding site within the catalytic domain of VEGFR-2.  相似文献   

4.
Different chromatographic methods including reversed-phase HPLC led to the isolation and purification of three O-methylated flavonoids; 5,4’-dihydroxy-3,6,7-tri-O-methyl flavone (penduletin) (1), 5,3’-dihydroxy-3,6,7,4’,5’-penta-O-methyl flavone (2), and 5-hydroxy-3,6,7,3’,4’,5’-hexa-O-methyl flavone (3) from Rhamnus disperma roots. Additionlly, four flavonoid glycosides; kampferol 7-O-α-L-rhamnopyranoside (4), isorhamnetin-3-O-β-D-glucopyranoside (5), quercetin 7-O-α-L-rhamnopyranoside (6), and kampferol 3, 7-di-O-α-L-rhamnopyranoside (7) along with benzyl-O-β-D-glucopyranoside (8) were successfully isolated. Complete structure characterization of these compounds was assigned based on NMR spectroscopic data, MS analyses, and comparison with the literature. The O-methyl protons and carbons of the three O-methylated flavonoids (1–3) were unambiguously assigned based on 2D NMR data. The occurrence of compounds 1, 4, 5, and 8 in Rhamnus disperma is was reported here for the first time. Compound 3 was acetylated at 5-OH position to give 5-O-acetyl-3,6,7,3’,4’,5’-hexa-O-methyl flavone (9). Compound 1 exhibited the highest cytotoxic activity against MCF 7, A2780, and HT29 cancer cell lines with IC50 values at 2.17 µM, 0.53 µM, and 2.16 µM, respectively, and was 2–9 folds more selective against tested cancer cell lines compared to the normal human fetal lung fibroblasts (MRC5). It also doubled MCF 7 apoptotic populations and caused G1 cell cycle arrest. The acetylated compound 9 exhibited cytotoxic activity against MCF 7 and HT29 cancer cell lines with IC50 values at 2.19 µM and 3.18 µM, respectively, and was 6–8 folds more cytotoxic to tested cancer cell lines compared to the MRC5 cells.  相似文献   

5.
In this study, two previously undescribed diterpenoids, (5R,10S,16R)-11,16,19-trihydroxy-12-O-β-d-glucopyranosyl-(1→2)-β-d-glucopyranosyl-17(15→16),18(4→3)-diabeo-3,8,11,13-abietatetraene-7-one (1) and (5R,10S,16R)-11,16-dihydroxy-12-O-β-d-glucopyranosyl-(1→2)-β-d-glucopyranosyl-17(15→16),18(4→3)-diabeo-4-carboxy-3,8,11,13-abietatetraene-7-one (2), and one known compound, the C13-nor-isoprenoid glycoside byzantionoside B (3), were isolated from the leaves of Clerodendrum infortunatum L. (Lamiaceae). Structures were established based on spectroscopic and spectrometric data and by comparison with literature data. The three terpenoids, along with five phenylpropanoids: 6′-O-caffeoyl-12-glucopyranosyloxyjasmonic acid (4), jionoside C (5), jionoside D (6), brachynoside (7), and incanoside C (8), previously isolated from the same source, were tested for their in vitro antidiabetic (α-amylase and α-glucosidase), anticancer (Hs578T and MDA-MB-231), and anticholinesterase activities. In an in vitro test against carbohydrate digestion enzymes, compound 6 showed the most potent effect against mammalian α-amylase (IC50 3.4 ± 0.2 μM) compared to the reference standard acarbose (IC50 5.9 ± 0.1 μM). As yeast α-glucosidase inhibitors, compounds 1, 2, 5, and 6 displayed moderate inhibitory activities, ranging from 24.6 to 96.0 μM, compared to acarbose (IC50 665 ± 42 μM). All of the tested compounds demonstrated negligible anticholinesterase effects. In an anticancer test, compounds 3 and 5 exhibited moderate antiproliferative properties with IC50 of 94.7 ± 1.3 and 85.3 ± 2.4 μM, respectively, against Hs578T cell, while the rest of the compounds did not show significant activity (IC50 > 100 μM).  相似文献   

6.
A new series of di-spirooxindole analogs, engrafted with oxindole and cyclohexanone moieties, were synthesized. Initially, azomethine ylides were generated via reaction of the substituted isatins 3a–f (isatin, 3a, 6-chloroisatin, 3b, 5-fluoroisatin, 3c, 5-nitroisatin, 3d, 5-methoxyisatin, 3e, and 5-methylisatin, 3f, and (2S)-octahydro-1H-indole-2-carboxylic acid 2, in situ azomethine ylides reacted with the cyclohexanone based-chalcone 1a–f to afford the target di-spirooxindole compounds 4a–n. This one-pot method provided diverse structurally complex molecules, with biologically relevant spirocycles in a good yields. All synthesized di-spirooxindole analogs, engrafted with oxindole and cyclohexanone moieties, were evaluated for their anticancer activity against four cancer cell lines, including prostate PC3, cervical HeLa, and breast (MCF-7, and MDA-MB231) cancer cell lines. The cytotoxicity of these di-spirooxindole analogs was also examined against human fibroblast BJ cell lines, and they appeared to be non-cytotoxic. Compound 4b was identified as the most active member of this series against prostate cancer cell line PC3 (IC50 = 3.7 ± 1.0 µM). The cyclohexanone engrafted di-spirooxindole analogs 4a and 4l (IC50 = 7.1 ± 0.2, and 7.2 ± 0.5 µM, respectively) were active against HeLa cancer cells, whereas NO2 substituted isatin ring and meta-fluoro-substituted (2E,6E)-2,6-dibenzylidenecyclohexanone containing 4i (IC50 = 7.63 ± 0.08 µM) appeared to be a promising agent against the triple negative breast cancer MDA-MB231 cell line. To explore the plausible mechanism of anticancer activity of di-spirooxindole analogs, molecular docking studies were investigated which suggested that spirooxindole analogs potentially inhibit the activity of MDM2.  相似文献   

7.
Phytochemical screening of nonpolar fractions from the methanol extract of the Bamboo shoot skin Phyllostachys heterocycla var. pubescens resulted in the isolation of a new sterol-glucoside-fatty acid derivative (6’-O-octadeca-8″,11″-dienoyl)-sitosterol-3-O-β-d-glucoside (1), together with six known compounds. The chemical structures of the pure isolated compounds were deduced based on different spectral data. The isolated compounds were assessed to determine their cytotoxic activity, and the results were confirmed by determining their apoptotic activity. Compound 1 was more cytotoxic against the MCF-7 cells (IC50 = 25.8 µM) compared to Fluorouracil (5-FU) (26.98 µM), and it significantly stimulated apoptotic breast cancer cell death with 32.6-fold (16.63% compared to 0.51 for the control) at pre-G1 and G2/M-phase cell cycle arrest and blocked the progression of MCF-7 cells. Additionally, RT-PCR results further confirmed the apoptotic activity of compound 1 by the upregulation of proapoptotic genes (P53; Bax; and caspases 3, 8, and 9) and downregulation of the antiapoptotic genes (BCL2). Finally, the identified compounds, especially 1, were found to have high binding affinity towards both tyrosine-specific protein kinase (TPK) and vascular endothelial growth factor receptor (VEGFR-2) through the molecular docking studies that highlight its mode of action.  相似文献   

8.
Two new A-ring contracted triterpenoids, madengaisu A and madengaisu B, and one undescribed ent-kaurane diterpenoid, madengaisu C, along with 20 known compounds were isolated from the roots of Potentilla freyniana Bornm. The structures were elucidated using extensive spectroscopic techniques, including 1D and 2D-NMR, HR-ESI-MS, ECD spectra, IR, and UV analysis. Moreover, all isolated constituents were evaluated for their anti-proliferative activity against RA-FLS cells and cytotoxic activities against the human cancer cell lines Hep-G2, HCT-116, BGC-823, and MCF-7. Ursolic acid and pomolic acid displayed moderate inhibitory activity in RA-FLS cells with IC50 values of 24.63 ± 1.96 and 25.12 ± 1.97 μM, respectively. Hyptadienic acid and 2α,3β-dihydroxyolean-12-en-28-oic acid 28-O-β-d-glucopyranoside exhibited good cytotoxicity against Hep-G2 cells with IC50 values of 25.16 ± 2.55 and 17.66 ± 1.82 μM, respectively. In addition, 2α,3β-dihydroxyolean-13(18)-en-28-oic acid and alphitolic acid were observed to inhibit HCT-116 cells (13.25 ± 1.65 and 21.62 ± 0.33 μM, respectively), while madengaisu B and 2α,3β-dihydroxyolean-13(18)-en-28-oic acid showed cytotoxic activities against BGC-823 cells with IC50 values of 24.76 ± 0.94 and 26.83 ± 2.52 μM, respectively, which demonstrated that triterpenes from P. freyniana may serve as therapeutic agents for RA and cancer treatment.  相似文献   

9.
The synthesis of novel triphenyltin(IV) compounds, Ph3SnLn (n = 1–3), with oxaprozin (3-(4,5-diphenyloxazol-2-yl)propanoic acid), HL1, and the new propanoic acid derivatives 3-(4,5-bis(4-methoxylphenyl)oxazol-2-yl)propanoic acid, HL2, and 3-(2,5-dioxo-4,4-diphenylimidazolidin-1-yl)propanoic acid, HL3, has been performed. The ligands represent commercial drugs or their derivatives and the tin complexes have been characterized by standard analytical methods. The in vitro antiproliferative activity of both ligands and organotin(IV) compounds has been evaluated on the following tumour cell lines: human prostate cancer (PC-3), human colorectal adenocarcinoma (HT-29), breast cancer (MCF-7), and hepatocellular cancer (HepG2), as well as on normal mouse embryonic fibroblast cells (NIH3T3) with the aid of MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-12 diphenyltetrazolium bromide) and CV (crystal violet) assays. Contrary to the inactive ligand precursors, all organotin(IV) carboxylates showed very good activity with IC50 values ranging from 0.100 to 0.758 µM. According to the CV assay (IC50 = 0.218 ± 0.025 µM), complex Ph3SnL1 demonstrated the highest cytotoxicity against the caspase 3 deficient MCF-7 cell line. Inductively coupled plasma mass spectrometry (ICP-MS) analysis indicated a two-fold lower concentration of tin in MCF-7 cells in comparison to platinum. To investigate the mechanism of action of the compound Ph3SnL1 on MCF-7 cells, morphological, autophagy and cell cycle analysis, as well as the activation of caspase and ROS/RNS and NO production, has been performed. Results suggest that Ph3SnL1 induces caspase-independent apoptosis in MCF-7 cells.  相似文献   

10.
The natural compound ravenelin was isolated from the biomass extracts of Exserohilum rostratum fungus, and its antimicrobial, antiplasmodial, and trypanocidal activities were evaluated. Ravenelin was isolated by column chromatography and HPLC and identified by NMR and MS. The susceptibility of Gram-positive and Gram-negative bacteria strains to ravenelin was determined by microbroth dilution assay. Cytotoxicity was evaluated in hepatocarcinoma cells (HepG2) and BALB/c peritoneal macrophages by using MTT. SYBR Green I-based assay was used in the asexual stages of Plasmodium falciparum. Trypanocidal activity was tested against the epimastigote and intracellular amastigote forms of Trypanosoma cruzi. Ravenelin was active against Gram-positive bacteria strains, with emphasis on Bacillus subtilis (MIC value of 7.5 µM). Ravenelin’s antiparasitic activities were assessed against both the epimastigote (IC50 value of 5 ± 1 µM) and the intracellular amastigote forms of T. cruzi (IC50 value of 9 ± 2 µM), as well as against P. falciparum (IC50 value of 3.4 ± 0.4 µM). Ravenelin showed low cytotoxic effects on both HepG2 (CC50 > 50 µM) and peritoneal macrophage (CC50 = 185 ± 1 µM) cells with attractive selectivity for the parasites (SI values > 15). These findings indicate that ravenelin is a natural compound with both antibacterial and antiparasitic activities, and considerable selectivity indexes. Therefore, ravenelin is an attractive candidate for hit-to-lead development.  相似文献   

11.
Ardisiacrispin D–F (1–3), three new 13,28 epoxy bridged oleanane-type triterpenoid saponins, together with four known analogues (4–7) were isolated from the roots of Ardisia crispa. The structures of 1–7 were elucidated based on 1D and 2D-NMR experiments and by comparing their spectroscopic data with values from the published literatures. Ardisiacrispin D–F (1–3) are first examples that the monosaccharide directly linked to aglycone C-3 of triterpenoid saponins in genus Ardisia are non-arabinopyranose. In the present paper, all compounds are evaluated for the cytotoxicity against three cancer cell lines (HeLa, HepG2 and U87 MG) in vitro. The results show that compounds 1, 4 and 6 exhibited significant cytotoxicity against Hela and U87 MG cells with IC50 values in the range of 2.2 ± 0.6 to 9.5 ± 1.8 µM. The present investigation suggests that roots of A. crispa could be a potential source of natural anti-tumor agents and their triterpenoid saponins might be responsible for cytotoxicity.  相似文献   

12.
Twenty newly synthesized derivatives of [6]-shogaol (4) were tested for inhibitory activity against histone deacetylases. All derivatives showed moderate to good histone deacetylase inhibition at 100 µM with a slightly lower potency than the lead compound. Most potent inhibitors among the derivatives were the pyrazole products, 5j and 5k, and the Michael adduct with pyridine 4c and benzothiazole 4d, with IC50 values of 51, 65, 61 and 60 µM, respectively. They were further evaluated for isoform selectivity via a molecular docking study. Compound 4d showed the best selectivity towards HDAC3, whereas compound 5k showed the best selectivity towards HDAC2. The potential derivatives were tested on five cancer cell lines, including human cervical cancer (HeLa), human colon cancer (HCT116), human breast adenocarcinoma cancer (MCF-7), and cholangiocarcinoma (KKU100 and KKU-M213B) cells with MTT-based assay. The most active histone deacetylase inhibitor 5j exhibited the best antiproliferative activity against HeLa, HCT116, and MCF-7, with IC50 values of 8.09, 9.65 and 11.57 µM, respectively, and a selective binding to HDAC1 based on molecular docking experiments. The results suggest that these compounds can be putative candidates for the development of anticancer drugs via inhibiting HDACs.  相似文献   

13.
A mild and versatile method based on Cu-catalyzed [2+3] cycloaddition (Huisgen-Meldal-Sharpless reaction) was developed to tether 3,3’-((4-(prop-2-yn-1-yloxy)phenyl)methylene)bis(4-hydroxyquinolin-2(1H)-ones) with 4-azido-2-quinolones in good yields. This methodology allowed attaching three quinolone molecules via a triazole linker with the proposed mechanism. The products are interesting precursors for their anti-proliferative activity. Compound 8g was the most active one, achieving IC50 = 1.2 ± 0.2 µM and 1.4 ± 0.2 µM against MCF-7 and Panc-1 cell lines, respectively. Moreover, cell cycle analysis of cells MCF-7 treated with 8g showed cell cycle arrest at the G2/M phase (supported by Caspase-3,8,9, Cytochrome C, BAX, and Bcl-2 studies). Additionally, significant pro-apoptotic activity is indicated by annexin V-FITC staining.  相似文献   

14.
A library of bile-acid-appended triazolyl aryl ketones was synthesized and characterized by detailed spectroscopic techniques such as 1H and 13C NMR, HRMS and HPLC. All the synthesized conjugates were evaluated for their cytotoxicity at 10 µM against MCF-7 (human breast adenocarcinoma) and 4T1 (mouse mammary carcinoma) cells. In vitro cytotoxicity studies on the synthesized conjugates against MCF-7 and 4T1 cells indicated one of the conjugate 6cf to be most active against both cancer cell lines, with IC50 values of 5.71 µM and 8.71 µM, respectively, as compared to the reference drug docetaxel, possessing IC50 values of 9.46 µM and 13.85 µM, respectively. Interestingly, another compound 6af (IC50 = 2.61 µM) was found to possess pronounced anticancer activity as compared to the reference drug docetaxel (IC50 = 9.46 µM) against MCF-7. In addition, the potent compounds (6cf and 6af) were found to be non-toxic to normal human embryonic kidney cell line (HEK 293), as evident from their cell viability of greater than 86%. Compound 6cf induces higher apoptosis in comparison to 6af (46.09% vs. 33.89%) in MCF-7 cells, while similar apoptotic potential was observed for 6cf and 6af in 4T1 cells. The pharmacokinetics of 6cf in Wistar rats showed an MRT of 8.47 h with a half-life of 5.63 h. Clearly, these results suggest 6cf to be a potential candidate for the development of anticancer agents.  相似文献   

15.
In vitro anti-proliferative activity of Pinus palustris extract and its purified abietic acid was assessed against different human cancer cell lines (HepG-2, MCF-7 and HCT-116) compared to normal WI-38 cell line. Abietic acid showed more promising IC50 values against MCF-7 cells than pine extract (0.06 µg/mL and 0.11 µM, respectively), with insignificant cytotoxicity toward normal fibroblast WI-38 cells. Abietic acid triggered both G2/M cell arrest and subG0-G1 subpopulation in MCF-7, compared to SubG0-G1 subpopulation arrest only for the extract. It also induced overexpression of key apoptotic genes (Fas, FasL, Casp3, Casp8, Cyt-C and Bax) and downregulation of both proliferation (VEGF, IGFR1, TGF-β) and oncogenic (C-myc and NF-κB) genes. Additionally, abietic acid induced overexpression of cytochrome-C protein. Furthermore, it increased levels of total antioxidants to diminish carcinogenesis and chemotherapy resistance. P. palustris is a valuable source of active abietic acid, an antiproliferative agent to MCF-7 cells through induction of apoptosis with promising future anticancer agency in breast cancer therapy.  相似文献   

16.
Five new compounds viz kaempferol 3-O-(4″-galloyl)-β-d-glucopyranosyl-(1‴→6″)-O-β-d-glucopyranoside (1), kaempferol 3-O-β-d-mannuronopyranoside (2), kaempferol 3-O-β-d-mannopyranoside (3), quercetin 3-O-β-d-mannuronopyranoside (4), 2, 3 (S)- hexahydroxydiphenoyl]-d-glucose (5) along with fifteen known compounds were isolated from 80% aqueous methanol extract (AME) of C. viminalis. AME and compounds exerted similar or better antioxidant activity to ascorbic acid using DPPH, O2, and NO inhibition methods. In addition, compounds 16, 4, and 7 showed cytotoxic activity against MCF-7 cell lines while 3, 7 and 16 exhibited strong activity against HepG2. An in silico analysis using molecular docking for polyphenolic compounds 2, 3, 7, 16 and 17 against human stable 5-LOX was performed and compared to that of ascorbic acid and quercetin. The binding mode as well as the enzyme-inhibitor interactions were evaluated. All compounds occupied the 5-LOX active site and showed binding affinity greater than ascorbic acid or quercetin. The data herein suggest that AME, a source of polyphenols, could be used against oxidative-stress-related disorders.  相似文献   

17.
This work is one of our efforts to discover potent anticancer agents. We modified the most promising derivative of our previous work concerned with the development of VEGFR-2 inhibitor candidates. Thirteen new compounds based on benzoxazole moiety were synthesized and evaluated against three human cancer cell lines, namely, breast cancer (MCF-7), colorectal carcinoma (HCT116), and hepatocellular carcinoma (HepG2). The synthesized compounds were also evaluated against VEGFR-2 kinase activity. The biological testing fallouts showed that compound 8d was more potent than standard sorafenib. Such compound showed IC50 values of 3.43, 2.79, and 2.43 µM against the aforementioned cancer cell lines, respectively, compared to IC50 values of 4.21, 5.30, and 3.40 µM reported for sorafenib. Compound 8d also was found to exert exceptional VEGFR-2 inhibition activity with an IC50 value of 0.0554 μM compared to sorafenib (0.0782 μM). In addition, compound 8h revealed excellent cytotoxic effects with IC50 values of 3.53, 2.94, and 2.76 µM against experienced cell lines, respectively. Furthermore, compounds 8a and 8e were found to inhibit VEGFR-2 kinase activity with IC50 values of 0.0579 and 0.0741 μM, exceeding that of sorafenib. Compound 8d showed a significant apoptotic effect and arrested the HepG2 cells at the pre-G1 phase. In addition, it exerted a significant inhibition for TNF-α (90.54%) and of IL-6 (92.19%) compared to dexamethasone (93.15%). The molecular docking studies showed that the binding pattern of the new compounds to VEGFR-2 kinase was similar to that of sorafenib.  相似文献   

18.
This study aimed to determine the in vitro cytotoxicity and understand possible cytotoxic mechanisms via an in silico study of eleven chalcones synthesized from two acetophenones. Five were synthesized from a prenylacetophenone isolated from a plant that grows in the Andean region of the Atacama Desert. The cytotoxic activity of all the synthesized chalcones was tested against breast cancer cell lines using an MTT cell proliferation assay. The results suggest that the prenyl group in the A-ring of the methoxy and hydroxyl substituents of the B-ring appear to be crucial for the cytotoxicity of these compounds. The chalcones 12 and 13 showed significant inhibitory effects against growth in MCF-7 cells (IC50 4.19 ± 1.04 µM and IC50 3.30 ± 0.92 µM), ZR-75-1 cells (IC50 9.40 ± 1.74 µM and IC50 8.75 ± 2.01µM), and MDA-MB-231 cells (IC50 6.12 ± 0.84 µM and IC50 18.10 ± 1.65 µM). Moreover, these chalcones showed differential activity between MCF-10F (IC50 95.76 ± 1.52 µM and IC50 95.11 ± 1.97 µM, respectively) and the tumor lines. The in vitro results agree with molecular coupling results, whose affinity energies and binding mode agree with the most active compounds. Thus, compounds 12 and 13 can be considered for further studies and are candidates for developing new antitumor agents. In conclusion, these observations give rise to a new hypothesis for designing chalcones with potential cytotoxicity with high potential for the pharmaceutical industry.  相似文献   

19.
The treatment of an aqueous acetonitrile solution of chloroplatinic acid hydrate H2PtCl6.xH2O and pyridine-2-carbaldehyde-oxime (paOH) in the presence of potassium thiocyanate at room temperature (25°) led to the formation of a new Pt(IV) complex with the formula [Pt(SCN)2(paO)2], (1). Complex 1 was fully characterized by FT-IR, UV-vis and NMR spectroscopic techniques as well as elemental analysis. The crystallographic structure of complex 1 was obtained by single-crystal X-ray diffraction. The structure of complex 1 consists of a distorted octahedral geometrical environment around the platinum center in which the coordination sites are occupied by two terminal thiocyanate ligands in trans arrangement and two bidentate paO ligands through four nitrogen atoms. In addition, the in vitro evaluation of the cytotoxicity of platinum complex 1 against four different cancer cell lines was performed. The IC50 values for colon (HCT116), liver (HepG2), breast (MCF-7) and erythroid (JK-1) treated with complex 1 are 19 ± 6, 21 ± 5, 22 ± 6, and 13 ± 3 μM, respectively. In HCT116 cells treated with the IC50 dose of our title compound, apoptosis and necrosis were increased by 34% and 27.8%, respectively. Cells halted in the proliferative phase (S phase) to 21.7 % and 29.8% in HCT116 and HepG2 cells treated with complex 1 have anti-proliferative actions. Furthermore, the catalytic activity of synthesized complex 1 was examined in the oxidation reaction of benzyl alcohols in the presence of an oxidant. Finally, the luminescence behavior of complex 1 was investigated.  相似文献   

20.
The in vitro activity of L. donovani (promastigotes, axenic amastigotes and intracellular amastigotes in THP1 cells) and T. brucei, from the fractions obtained from the hydroalcoholic extract of the aerial part of Hypericum afrum and the isolated compounds, has been evaluated. The chloroform, ethyl acetate and n-butanol extracts showed significant antitrypanosomal activity towards T. brucei, with IC50 values of 12.35, 13.53 and 12.93 µg/mL and with IC90 values of 14.94, 19.31 and 18.67 µg/mL, respectively. The phytochemical investigation of the fractions led to the isolation and identification of quercetin (1), myricitrin (2), biapigenin (3), myricetin (4), hyperoside (5), myricetin-3-O-β-d-galactopyranoside (6) and myricetin-3’-O-β-d-glucopyranoside (7). Myricetin-3’-O-β-d-glucopyranoside (7) has been isolated for the first time from this genus. The chemical structures were elucidated by using comprehensive one- and two-dimensional nuclear magnetic resonance (1D and 2D NMR) spectroscopic data, as well as high-resolution electrospray ionization mass spectrometry (HR-ESI–MS). These compounds have also been evaluated for their antiprotozoal activity. Quercetin (1) and myricetin (4) showed noteworthy activity against T. brucei, with IC50 and IC90 values of 7.52 and 5.71 µM, and 9.76 and 7.97 µM, respectively. The T. brucei hexokinase (TbHK1) enzyme was further explored as a potential target of quercetin and myricetin, using molecular modeling studies. This proposed mechanism assists in the exploration of new candidates for novel antitrypanosomal drugs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号