首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this study, Scenedesmus sp. FSP3 was cultured using a two-stage culture strategy for CO2 fixation and lutein production. During the first stage, propylene carbonate was added to the medium, with 5% CO2 introduced to promote the rapid growth and CO2 fixation of the microalgae. During the second stage of cultivation, a NaCl concentration of 156 mmol L−1 and a light intensity of 160 μmol m−2 s−1 were used to stimulate the accumulation of lutein in the microalgal cells. By using this culture method, high lutein production and CO2 fixation were simultaneously achieved. The biomass productivity and carbon fixation rate of Scenedesmus sp. FSP3 reached 0.58 g L−1 d−1 and 1.09 g L−1 d−1, with a lutein content and yield as high as 6.45 mg g−1 and 2.30 mg L−1 d−1, respectively. The results reveal a commercially feasible way to integrate microalgal lutein production with CO2 fixation processes.  相似文献   

2.
In this study, the effect of media composition, N/P ratio and cultivation strategy on the formation of carotenoids in a Coelastrella sp. isolate was investigated. A two-stage process utilizing different media in the vegetative stage, with subsequent re-suspension in medium without nitrate, was employed to enhance the formation of carotenoids. The optimal growth and carotenoid content (β-carotene and lutein) in the vegetative phase were obtained by cultivation in M-8 and BG11 media. Use of a N/P ratio of 37.5 and low light intensity of 40 μmol m−2 s−1 (control conditions) led to optimal biomass production of up to 1.31 g L−1. Low concentrations of astaxanthin (maximum of 0.31 wt. %) were accumulated under stress conditions (nitrogen-deficient medium containing 1.5 % of NaCl and light intensity of 500 μmol m−2 s−1), while β-carotene and lutein (combined maximum of 2.12 wt. %) were produced under non-stress conditions. Lipid analysis revealed that palmitic (C16:0) and oleic (C18:1) constituted the main algal fatty acid chains (50.2 ± 2.1% of the total fatty acids), while esterifiable lipids constituted 17.2 ± 0.5% of the biomass by weight. These results suggest that Coelastrella sp. could also be a promising feedstock for biodiesel production.  相似文献   

3.
Microalgae are a valuable natural resource for a variety of biocompounds such as carotenoids. The use of different light spectra and irradiance has been considered as a promising option to improve the production of these compounds. The objective of this study was to evaluate the influence of different wavelengths (white, red, and blue) and irradiances (80 and 350 µmol photons/m2/s) on the photosynthetic state, total carotenoids and lutein productivity (HPLC), lipids (Nile red method) and antioxidant activity (DPPH) of the microalgae Muriellopsis sp. (MCH-35). This microalga, which is a potential source of lutein, was isolated from the coastal desert of Antofagasta, Chile, and adapted to grow in seawater. The results indicate that the culture exposed to high-intensity red light showed the highest biomass yield (2.5 g/L) and lutein productivity (>2.0 mg L−1day−1). However, blue light was found to have a stimulating effect on the synthesis of lutein and other carotenoids (>0.8% dry wt). Furthermore, a direct relationship between lipid accumulation and high light intensity was evidenced. Finally, the highest antioxidant activity was observed with high-intensity white light, these values have no direct relationship with lutein productivity. Therefore, the findings of this study could be utilized to obtain biocompounds of interest by altering certain culture conditions during the large-scale cultivation of MCH-35.  相似文献   

4.
Astaxanthin, a carotenoid pigment found in several aquatic organisms, is responsible for the red colour of salmon, trout and crustaceans. In this study, astaxanthin production from freshwater microalga Chlorella sorokiniana and marine microalga Tetraselmis sp. was investigated. Cell growth and astaxanthin production were determined spectrophotometrically at 620 and 480 nm, respectively. Astaxanthin was extracted using acetone and measured subsequent to biomass removal. Aerated conditions favoured astaxanthin production in C. sorokiniana, whereas Tetraselmis sp. was best cultured under unaerated conditions. C. sorokiniana produced more astaxanthin with the highest yield reached at 7.83 mg/l in 6.0 mM in nitrate containing medium compared to Tetraselmis sp. which recorded the highest yield of only 1.96 mg/l in 1.5 mM nitrate containing medium. Production in C. sorokiniana started at the early exponential phase, indicating that astaxanthin may be a growth-associated product in this microalga. Further optimization of astaxanthin production was performed using C. sorokiniana through a 23 full factorial experimental design, and a yield of 8.39 mg/l was achieved. Overall, the study has shown that both microalgae are capable of producing astaxanthin. Additionally, this research has highlighted C. sorokiniana as a potential astaxanthin producer that could serve as a natural astaxanthin source in the current market.  相似文献   

5.
C. vulgaris is a unicellular microalgae, whose growth depends on the conditions in which it is found, synthesizing primary and secondary metabolites in different proportions. Therefore, we analyzed and established conditions in which it was possible to increase the yields of metabolites obtained at the flask level, which could then be scaled to the photobioreactor level. As a methodology, a screening design was applied, which evaluated three factors: type of substrate (sodium acetate or glycerol); substrate concentration; and exposure-time to red light (photoperiod: 16:8 and 8:16 light/darkness). The response variables were: cell division; biomass; substrate consumption; and antioxidant activity in intracellular metabolites (ABTS•+ and DPPH•). As a result, the sodium acetate condition of 0.001 g/L, in a photoperiod of 16 h of light, presented a doubling time (Td = 4.84 h) and a higher rate of division (σ = 0.20 h−1), having a final biomass concentration of 2.075 g/L. In addition, a higher concentration of metabolites with antioxidant activity was found in the sodium acetate (0.629 Trolox equivalents mg/L ABTS•+ and 0.630 Trolox equivalents mg/L DPPH•). For the glycerol, after the same photoperiod (16 h of light and 8 h of darkness), the doubling time (Td) was 4.63 h, with a maximum division rate of σ = 0.18 h−1 and with a biomass concentration at the end of the kinetics of 1.4 g/L. Sodium acetate under long photoperiods, therefore, is ideal for the growth of C. vulgaris, which can then be scaled to the photobioreactor level.  相似文献   

6.
Media supplementation with exogenous chemicals is known to stimulate the accumulation of important lipids produced by microalgae and thraustochytrids. However, the roles of exogenous chemicals in promoting and preserving the terpenoids pool of thraustochytrids have been rarely investigated. Here, we realized the effects of two media supplements—mannitol and biotin—on the biomass and squalene production by a thraustochytrid strain (Thraustochytrium sp. ATCC 26185) and elucidated their mechanism of action. A significant change in the biomass was not evident with the exogenous addition of these supplements. However, with mannitol (1 g/L) supplementation, the ATCC 26185 culture achieved the best concentration (642 ± 13.6 mg/L) and yield (72.9 ± 9.6 mg/g) of squalene, which were 1.5-fold that of the control culture (non-supplemented). Similarly, with biotin supplementation (0.15 mg/L), the culture showed 459 ± 2.9 g/L and 55.7 ± 3.2 mg/g of squalene concentration and yield, respectively. The glucose uptake rate at 24 h of fermentation increased markedly with mannitol (0.31 g/Lh−1) or biotin (0.26 g/Lh−1) supplemented culture compared with non-supplemented culture (0.09 g/Lh−1). In addition, the reactive oxygen species (ROS) level of culture supplemented with mannitol remained alleviated during the entire period of fermentation while it alleviated after 24 h with biotin supplementation. The ∆ROS with mannitol was better compared with biotin supplementation. The total antioxidant capacity (T-AOC) of the supplemented culture was more than 50% during the late stage (72–96 h) of fermentation. Our study provides the potential of mannitol and biotin to enhance squalene yield and the first lines of experimental evidence for their protective role against oxidative stress during the culture of thraustochytrids.  相似文献   

7.
This study was performed to investigate the effects of different supplemental light spectra and doses (duration and illuminance) on the essential oil of basil (Ocimum basilicum L.) cultivated in the net-house in Vietnam during four months. Ten samples of basil aerial parts were hydrodistilled to obtain essential oils which had the average yields from 0.88 to 1.30% (v/w, dry). The oils analyzed using GC-FID and GC-MS showed that the main component was methyl chavicol (87.4–90.6%) with the highest values found in the oils of basil under lighting conditions of 6 h/day and 150–200 µmol·m−2·s−1. Additional lighting conditions caused the significant differences (p < 0.001) in basil biomass and oil production with the highest values found in the oils of basil under two conditions of (1) 71% Red: 20% Blue: 9.0% UVA in at 120 μmol·m−2·s−1 in 6 h/day and (2) 43.5% Red: 43.5% Blue: 8.0% Green: 5.0% Far-Red at 100 μmol·m−2·s−1 in 6 h/day. The oils of basil in some formulas showed weak inhibitory effects on only the Bacillus subtilis strain. Different light spectra affect the biomass and essential oil production of basil, as well as the concentrations of the major components in the oil.  相似文献   

8.
Ionic liquids (ILs) have emerged as active pharmaceutical ingredients because of their excellent antibacterial and biological activities. Herein, we used the green-chemistry-synthesis procedure, also known as the metathesis method, to develop three series of ionic liquids using 1-methyl-3-butyl imidazolium, butyl pyridinium, and diethyldibutylammonium as cations, and bromide (Br), methanesulfonate (CH3SO3), bis(trifluoromethanesulfonyl)imide (NTf2), dichloroacetate (CHCl2CO2), tetrafluoroborate (BF4), and hydrogen sulfate (HSO4) as anions. Spectroscopic methods were used to validate the structures of the lab-synthesized ILs. We performed an agar well diffusion assay by using pathogenic bacteria that cause various infections (Escherichia coli; Enterobacter aerogenes; Klebsiella pneumoniae; Proteus vulgaris; Pseudomonas aeruginosa; Streptococcus pneumoniae; Streptococcus pyogenes) to scrutinize the in vitro antibacterial activity of the ILs. It was established that the nature and unique combination of the cations and anions were responsible for the antibacterial activity of the ILs. Among the tested ionic liquids, the imidazolium cation and NTf2 and HSO4 anions exhibited the highest antibacterial activity. The antibacterial potential was further investigated by in silico studies, and it was observed that bis(trifluoromethanesulfonyl)imide (NTf2) containing imidazolium and pyridinium ionic liquids showed the maximum inhibition against the targeted bacterial strains and could be utilized in antibiotics. These antibacterial activities float the ILs as a promising alternative to the existing antibiotics and antiseptics.  相似文献   

9.
Microalgae were selected and isolated from acid mine drainage in order to find microalgae species which could be cultivated in low pH condition. In the present investigation, 30 microalgae were isolated from ten locations of acid mine drainage in South Korea. Four microalgae were selected based on their growth rate, morphology, and identified as strains of KGE1, KGE3, KGE4, and KGE7. The dry biomass of microalgae species ranged between 1 and 2 g L?1 after 21 days of cultivation. The growth kinetics of microalgae was well described by logistic growth model. Among these, KGE7 has the highest biomass production (2.05?±?0.35 g L?1), lipid productivity (0.82?±?0.14 g L?1), and C16–C18 fatty acid contents (97.6 %). These results suggest that Scenedesmus sp. KGE 7 can be utilized for biodiesel production based on its high biomass and lipid productivity.  相似文献   

10.
Due to the lack of phytochemical composition data, the major goals of the present study on Amphiroa rigida J.V. Lamouroux were to: (a) investigate and compare volatilome profiles of fresh and air-dried samples obtained by headspace solid-phase microextraction (HS-SPME) and hydrodistillation (HD) followed by gas chromatography and mass spectrometry (GC/MS) analysis; (b) determine fatty acids profile by gas chromatography with flame ionization detector (GC-FID); (c) obtain the pigment profiles of semipurified extracts by high performance liquid chromatography (HPLC) and (d) evaluate the antioxidant and antimicrobial activities of its less polar fractions. The comparison of headspace of fresh (FrAr) and air-dried (DrAr) samples revealed many similarities regarding the presence and abundance of the major (heptadecane and pentadecane) and minor compounds. The hydrodistillate (HD) of DrAr profile was quite different in comparison to HD-FrAr. The predominant compound in HD-FrAr was (E)-phytol. In HD-DrAr, its percentage was approximately one-half reduced, but the abundance of its degradation product phytone and of unsaturated and oxygenated compounds increased indicating more intense fatty acid decomposition and oxidation during drying. The fatty acid determination revealed that the most dominant was palmitic acid (42.86%) followed by eicosapentaenoic acid (19.14%) and stearic acid (11.65%). Among the pigments, A. rigida contained fucoxanthin (0.63 mg g−1 of dry fraction), lutein (5.83 mg g−1), β-carotene (6.18 mg g−1) and chlorophyll a (13.65 mg g−1). The analyzed less polar fractions of A. rigida exhibited antioxidant scavenging activity with diammonium salt of 2,2′-azino-bis (3-ethylbenzthiazolin-6-yl) sulfonic acid (ABTS) assay up to 3.87 mg g−1 trolox equivalents (TE), and with the oxygen radical absorbance capacity (ORAC) assay up to 825.63 μmol g−1 TE (with carotenoids as the major contributors).  相似文献   

11.
Biochar from forest biomass and its remains has become an essential material for environmental engineering, and is used in the environment to restore or improve soil function and its fertility, where it changes the chemical, physical and biological processes. The article presents the research results on the opportunity to use the pyrolysis process to receive multifunctional biochar materials from oak biomass. It was found that biochars obtained from oak biomass at 450 and 500 °C for 10 min were rich in macronutrients. The greatest variety of the examined elements was characterized by oak-leaf pyrolysate, and high levels of Ca, Fe, K, Mg, P, S, Na were noticed. Pyrolysates from acorns were high in Fe, K, P and S. Oak bark biochars were rich in Ca, Fe, S and contained nitrogen. In addition, biomass pyrolysis has been found to improve energy parameters and does not increase the dust explosion hazard class. The oak biomass pyrolytic at 450 and 500 °C after 10 min increases its caloric content for all samples tested by at least 50%. The highest caloric value among the raw biomass tested was observed in oak bark: 19.93 MJ kg−1 and oak branches: 19.23 MJ kg−1. The mean and highest recorded Kst max were 94.75 and 94.85 bar s−1, respectively. It can be concluded that pyrolysis has the potential to add value to regionally available oak biomass. The results described in this work provide a basis for subsequent, detailed research to obtain desired knowledge about the selection of the composition, purpose, and safety rules of production, storage, transport and use of biochar materials.  相似文献   

12.
As microalgae are producers of proteins, lipids, polysaccharides, pigments, vitamins and unique secondary metabolites, microalgal biotechnology has gained attention in recent decades. Microalgae can be used for biomass production and to obtain biotechnologically important products. Here, we present the application of a method of producing a natural, biologically active composite obtained from unicellular microalgae of the genus Planktochlorella sp. as a modulator of the growth of microorganisms that can be used in the cosmetics and pharmaceutical industries by exploiting the phenomenon of photo-reprogramming of metabolism. The combination of red and blue light allows the collection of biomass with unique biochemical profiles, especially fatty acid composition (Patent Application P.429620). The ethanolic and water extracts of algae biomass inhibited the growth of a number of pathogenic bacteria, namely Enterococcus faecalis, Staphylococcus aureus PCM 458, Streptococcus pyogenes PCM 2318, Pseudomonas aeruginosa, Escherichia coli PCM 2209 and Candida albicans ATCC 14053. The algal biocomposite obtained according to our procedure can be used also as a prebiotic supplement. The presented technology may allow the limitation of the use of antibiotics and environmentally harmful chemicals commonly used in preparations against Enterococcus faecalis, Staphylococcus aureus, Streptococcus pyogenes, Pseudomonas aeruginosa, Escherichia coli or Candida spp.  相似文献   

13.
To search for efficient agricultural antifungal lead compounds, 39 Chimonanthus praecox derivatives were designed, synthesized, and evaluated for their antifungal activities. The structures of target compounds were fully characterized by 1H NMR, 13C NMR, and MS spectra. The preliminary bioassays revealed that some compounds exhibited excellent antifungal activities in vitro. For example, the minimum inhibitory concentration (MIC) of compound b15 against Phytophthora infestans was 1.95 µg mL−1, and the minimum inhibitory concentration (MIC) of compound b17 against Sclerotinia sclerotiorum was 1.95 µg mL−1. Therefore, compounds b15 and b17 were identified as the most promising candidates for further study.  相似文献   

14.
Spruce (Picea abies) wood hemicelluloses have been obtained by the noncatalytic and catalytic oxidative delignification in the acetic acid-water-hydrogen peroxide medium in a processing time of 3–4 h and temperatures of 90–100 °C. In the catalytic process, the H2SO4, MnSO4, TiO2, and (NH4)6Mo7O24 catalysts have been used. A polysaccharide yield of up to 11.7 wt% has been found. The hemicellulose composition and structure have been studied by a complex of physicochemical methods, including gas and gel permeation chromatography, Fourier-transform infrared spectroscopy, and thermogravimetric analysis. The galactose:mannose:glucose:arabinose:xylose monomeric units in a ratio of 5:3:2:1:1 have been identified in the hemicelluloses by gas chromatography. Using gel permeation chromatography, the weight average molar mass Mw of hemicelluloses has been found to attain 47,654 g/mol in noncatalytic delignification and up to 42,793 g/mol in catalytic delignification. Based on the same technique, a method for determining the α and k parameters of the Mark–Kuhn–Houwink equation for hemicelluloses has been developed; it has been established that these parameters change between 0.33–1.01 and 1.57–472.17, respectively, depending on the catalyst concentration and process temperature and time. Moreover, the FTIR spectra of the hemicellulose samples contain all the bands characteristic of heteropolysaccharides, specifically, 1069 cm−1 (C–O–C and C–O–H), 1738 cm−1 (ester C=O), 1375 cm−1 (–C–CH3), 1243 cm−1 (–C–O–), etc. It has been determined by the thermogravimetric analysis that the hemicelluloses isolated from spruce wood are resistant to heating to temperatures of up to ~100 °C and, upon further heating, start destructing at an increasing rate. The antioxidant activity of the hemicelluloses has been examined using the compounds simulating the 2,2-diphenyl-2-picrylhydrazyl free radicals.  相似文献   

15.
Bromelain is a unique enzyme-based bioactive complex containing a mixture of cysteine proteases specifically found in the stems and fruits of pineapple (Ananas comosus) with a wide range of applications. MD2 pineapple harbors a gene encoding a small bromelain cysteine protease with the size of about 19 kDa, which might possess unique properties compared to the other cysteine protease bromelain. This study aims to determine the expressibility and catalytic properties of small-sized (19 kDa) bromelain from MD2 pineapple (MD2-SBro). Accordingly, the gene encoding MD2-SBro was firstly optimized in its codon profile, synthesized, and inserted into the pGS-21a vector. The insolubly expressed MD2-SBro was then resolubilized and refolded using urea treatment, followed by purification by glutathione S-transferase (GST) affinity chromatography, yielding 14 mg of pure MD2-SBro from 1 L of culture. The specific activity and catalytic efficiency (kcat/Km) of MD2-SBro were 3.56 ± 0.08 U mg−1 and 4.75 ± 0.23 × 10−3 µM−1 s−1, respectively, where optimally active at 50 °C and pH 8.0, and modulated by divalent ions. The MD2-SBro also exhibited the ability to scavenge the 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) with an IC50 of 0.022 mg mL−1. Altogether, this study provides the production feasibility of active and functional MD2-Bro as a bioactive compound.  相似文献   

16.
Annona macroprophyllata Donn (A. macroprophyllata) is used in traditional Mexican medicine for the treatment of cancer, diabetes, inflammation, and pain. In this work, we evaluated the antitumor activity of three acyclic terpenoids obtained from A. macroprophyllata to assess their potential as antilymphoma agents. We identified the terpenoids farnesyl acetate (FA), phytol (PT) and geranylgeraniol (Gg) using gas chromatography–mass spectroscopy (GC-MS) and spectroscopic (1H, and 13C NMR) methods applied to petroleum ether extract of leaves from A. macroprophyllata (PEAm). We investigated antitumor potential in Balb/c mice inoculated with U-937 cells by assessing brine shrimp lethality (BSL), and cytotoxic activity in these cells. In addition, to assess the potential toxicity of PEAm, FA, PT and Gg in humans, we tested their acute oral toxicity in mice. Our results showed that the three terpenoids exhibited considerable antilymphoma and cytotoxic activity. In terms of lethality, we determined a median lethal dose (LD50) for thirteen isolated products of PEAm. Gg, PT and AF all exhibited a higher lethality with values of 1.41 ± 0.42, 3.03 ± 0.33 and 5.82 ± 0.58 µg mL−1, respectively. To assess cytotoxic activity against U-937 cells, we calculated the mean cytotoxic concentration (CC50) and found that FA and PT were closer in respect to the control drug methotrexate (MTX, 0.243 ± 0.007 µM). In terms of antilymphoma activity, we found that FA, PT and Gg considerably inhibited lymph node growth, with median effective doses (ED50) of 5.89 ± 0.39, 6.71 ± 0.31 and 7.22 ± 0.51 mg kg−1 in females and 5.09 ± 0.66, 5.83 ± 0.50 and 6.98 ± 0.57mg kg −1 in males, respectively. Regarding acute oral toxicity, we classified all three terpenoids as category IV, indicating a high safety margin for human administration. Finally, in a molecular docking study of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase, we found binding of terpenoids to some amino acids of the catalytic site, suggesting an effect upon activity with a resulting decrease in the synthesis of intermediates involved in the prenylation of proteins involved in cancer progression. Our findings suggest that the acyclic terpenoids FA, PT, and Gg may serve as scaffolds for the development of new treatments for non-Hodgkin’s lymphoma.  相似文献   

17.
This work aimed to characterize two native microalgal strains newly isolated from South Mediterranean areas and identified as Chlorella sorokiniana ES3 and Neochloris sp. AM2. The growth properties and biochemical composition of these microalgae were evaluated in different culture media (Algal, BG-11, f/2, and Conway). Among the tested media, nitrate- and phosphate-rich Algal medium provided the maximum biomass productivities (85.5 and 111.5 mg l?1 day?1 for C. sorokiniana and Neochloris sp., respectively), while the nitrate- and phosphate-deficient f/2 medium resulted in the highest lipid productivities (24.1 and 35.8 mg l?1 day?1 for C. sorokiniana and Neochloris sp., respectively). The physiological state of both microalgae was investigated under different light and temperature levels using the pulse amplitude-modulated fluorometry. The better photosynthetic efficiency of C. sorokiniana was obtained at 23 °C with a light saturation of 156 μE m?2 s?1, while that of Neochloris sp. was achieved at 15 °C with a light saturation of 151 μE m?2 s?1. The analysis of fatty acid profile and biodiesel parameters revealed that C. sorokiniana, cultivated in Algal and f/2 media, can be considered as a suitable candidate for high-quality biodiesel production.  相似文献   

18.
Aeonium is a genus of succulents belonging to the Crassulaceae family. Their importance in traditional medicine has stimulated both pharmacological and chemical research. In this study, we optimized extraction, separation, and analytical conditions using a high performance liquid chromatographic method coupled with electrospray ionization mass spectrometry by the negative mode (HPLC-ESI-MS) in order to, for the first time, determine thirty-four compounds from Aeonium arboreum leaves. Twenty-one of them are assigned among which are sixteen flavonoids and five phenolic acids. FRAP, TAC, DPPH, and ABTS•+ radical scavenging were used to evaluate antioxidant activity. The obtained IC50 values ranged from 0.031 to 0.043 mg.mL−1 for DPPH and between 0.048 and 0.09 mg·mL−1 for ABTS•+. Antimicrobial activity was also assessed. The obtained minimum inhibitory concentrations (MIC) of these extracts ranged from 12.5 to 50 µg·mL−1 against Micrococcus luteus, Listeria ivanovii, Staphylococcus aureus, Salmonella enterica, Escherichia coli, Pseudomonas aeruginosa, Aspergillus niger, and Fusarium oxysporum, and from 25 to 50 µg·mL−1 against Candida albicans. Therefore, these extracts can be considered as a potential source of biological active compounds.  相似文献   

19.
Acacia spp. are invasive in Southern Europe, and their high propagation rates produce excessive biomass, exacerbating wildfire risk. However, lignocellulosic biomass from Acacia spp. may be utilised for diverse biorefinery applications. In this study, attenuated total reflectance Fourier transform infrared spectroscopy (FTIR-ATR), high-performance anion-exchange chromatography pulsed amperometric detection (HPAEC-PAD) and lignin content determinations were used for a comparative compositional characterisation of A. dealbata, A. longifolia and A. melanoxylon. Additionally, biomass was treated with three white-rot fungi species (Ganoderma lucidum, Pleurotus ostreatus and Trametes versicolor), which preferentially degrade lignin. Our results showed that the pre-treatments do not significantly alter neutral sugar composition while reducing lignin content. Sugar release from enzymatic saccharification was enhanced, in some cases possibly due to a synergy between white-rot fungi and mild alkali pretreatments. For example, in A. dealbata stems treated with alkali and P. ostreatus, saccharification yield was 702.3 nmol mg−1, which is higher than the samples treated only with alkali (608.1 nmol mg−1), and 2.9-fold higher than the non-pretreated controls (243.9 nmol mg−1). By characterising biomass and pretreatments, generated data creates value for unused biomass resources, contributing to the implementation of sustainable biorefining systems. In due course, the generated value will lead to economic incentives for landowners to cut back invasive Acacia spp. more frequently, thus reducing excess biomass, which exacerbates wildfire risk.  相似文献   

20.
Iron ions can be used to degrade tetracycline dispersed in nature. Studies of absorption and fluorescence spectra and quantum chemistry calculations showed that iron is more readily released from Fe(III)-citrate than from Fe(III)-EDTA, so Fe(III)-citrate (Fe(III)-Cit) is more suitable for tetracycline (TC) degradation. At 30 °C, a severe degradation of TC by Fe(III)-Cit occurred as early as after 3 days of incubation in the light, and after 5 days in the dark. In contrast, the degradation of TC by Fe(III)-EDTA proceeded very slowly in the dark. By the fifth day of incubation of TC with Fe(III)-Cit in darkness, the concentrations of the former compound dropped by 55% and 75%, at 20 °C and 30 °C, respectively. The decrease in tetracycline concentrations caused by Fe(III)-EDTA in darkness at the same temperatures was only 2% and 6%, respectively. Light increased the degradation rates of TC by Fe(III)-EDTA to 20% and 56% at 20 °C and 30 °C, respectively. The key role of the light in the degradation of tetracycline by Fe(III)-EDTA was thus demonstrated. The TC degradation reaction showed a second-order kinetics. The rate constants of Fe(III)-Cit-induced TC degradation at 20 °C and 30 °C in darkness were k = 4238 M−1day−1 and k = 11,330 M−1day−1, respectively, while for Fe(III)-EDTA were 55 M−1day−1 and 226 M−1day−1. In light, these constants were k = 15,440 M−1day−1 and k = 40,270 M−1day−1 for Fe(III)-Cit and k = 1012 M−1day−1 and 2050 M−1day−1 at 20 °C and 30 °C; respectively. A possible reason for the higher TC degradation rate caused by Fe(III)-Cit can be the result of its lower thermodynamical stability compared with Fe(III)-EDTA, which we confirmed with our quantum chemistry calculations. Two quantum chemistry calculations showed that the iron complex with EDTA is more stable (the free energy of the ensemble is 15.8 kcal/mol lower) than the iron complex with Cit; hence, Fe release from Fe(III)-EDTA is less effective.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号