首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到4条相似文献,搜索用时 0 毫秒
1.
The COVID-19 pandemic has raised many questions on how to manage an epidemiological and economic crisis around the world. Since the beginning of the COVID-19 pandemic, scientists and policy makers have been asking how effective lockdowns are in preventing and controlling the spread of the virus. In the absence of vaccines, the regulators lacked any plausible alternatives. Nevertheless, after the introduction of vaccinations, to what extent the conclusions of these analyses are still valid should be considered. In this paper, we present a study on the effect of vaccinations within the dynamic stochastic general equilibrium model with an agent-based epidemic component. Thus, we validated the results regarding the need to use lockdowns as an efficient tool for preventing and controlling epidemics that were obtained in November 2020.  相似文献   

2.
Modelling the epidemic’s spread on multiplex networks, considering complex human behaviours, has recently gained the attention of many scientists. In this work, we study the interplay between epidemic spreading and opinion dynamics on multiplex networks. An agent in the epidemic layer could remain in one of five distinct states, resulting in the SIRQD model. The agent’s attitude towards respecting the restrictions of the pandemic plays a crucial role in its prevalence. In our model, the agent’s point of view could be altered by either conformism mechanism, social pressure, or independent actions. As the underlying opinion model, we leverage the q-voter model. The entire system constitutes a coupled opinion–dynamic model where two distinct processes occur. The question arises of how to properly align these dynamics, i.e., whether they should possess equal or disparate timescales. This paper highlights the impact of different timescales of opinion dynamics on epidemic spreading, focusing on the time and the infection’s peak.  相似文献   

3.
We propose a new approach to the old-standing problem of the anomaly of the scaling exponents of passive scalars of turbulence. Different to the original problem, the distribution function of the prescribed random velocity field is multi-dimensional normal and delta-correlated in time. Here, our random velocity field is spatially correlative. For comparison, we also give the result obtained by the Gaussian random velocity field without spatial correlation. The anomalous scaling exponents H(p) of passive scalar advected by two kinds of random velocity above are determined for structure function up to p= 15 by numerical simulations of the random shell model with Runge-Kutta methods to solve the stochastic differential equations. We observed that the H(p) 's obtained by the multi-dimeasional normal distribution random velocity are more anomalous than those obtained by the independent Gaussian random velocity.  相似文献   

4.
We propose a new approach to the old-standing problem of the anomaly of the scaling exponents of passive scalars of turbulence. Different to the original problem, the distribution function of the prescribed random velocity field is multi-dimensional normal and delta-correlated in time. Here, our random velocity field is spatially correlative. For comparison, we also give the result obtained by the Gaussian random velocity field without spatial correlation. The anomalous scaling exponents H(p) of passive scalar advected by two kinds of random velocity above are determined for structure function up to p=15 by numerical simulations of the random shell model with Runge-Kutta methods to solve the stochastic differential equations. We observed that the H(p)'s obtained by the multi-dimensional normal distribution random velocity are more anomalous than those obtained by the independent Gaussian random velocity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号