首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The goal of the paper is to present a solution to improve the fault detection accuracy of rolling bearings. The method is based on variational mode decomposition (VMD), multiscale permutation entropy (MPE) and the particle swarm optimization-based support vector machine (PSO-SVM). Firstly, the original bearing vibration signal is decomposed into several intrinsic mode functions (IMF) by using the VMD method, and the feature energy ratio (FER) criterion is introduced to reconstruct the bearing vibration signal. Secondly, the multiscale permutation entropy of the reconstructed signal is calculated to construct multidimensional feature vectors. Finally, the constructed multidimensional feature vector is fed into the PSO-SVM classification model for automatic identification of different fault patterns of the rolling bearing. Two experimental cases are adopted to validate the effectiveness of the proposed method. Experimental results show that the proposed method can achieve a higher identification accuracy compared with some similar available methods (e.g., variational mode decomposition-based multiscale sample entropy (VMD-MSE), variational mode decomposition-based multiscale fuzzy entropy (VMD-MFE), empirical mode decomposition-based multiscale permutation entropy (EMD-MPE) and wavelet transform-based multiscale permutation entropy (WT-MPE)).  相似文献   

2.
When rolling bearings have a local fault, the real bearing vibration signal related to the local fault is characterized by the properties of nonlinear and nonstationary. To extract the useful fault features from the collected nonlinear and nonstationary bearing vibration signals and improve diagnostic accuracy, this paper proposes a new bearing fault diagnosis method based on parameter adaptive variational mode extraction (PAVME) and multiscale envelope dispersion entropy (MEDE). Firstly, a new method hailed as parameter adaptive variational mode extraction (PAVME) is presented to process the collected original bearing vibration signal and obtain the frequency components related to bearing faults, where its two important parameters (i.e., the penalty factor and mode center-frequency) are automatically determined by whale optimization algorithm. Subsequently, based on the processed bearing vibration signal, an effective complexity evaluation approach named multiscale envelope dispersion entropy (MEDE) is calculated for conducting bearing fault feature extraction. Finally, the extracted fault features are fed into the k-nearest neighbor (KNN) to automatically identify different health conditions of rolling bearing. Case studies and contrastive analysis are performed to validate the effectiveness and superiority of the proposed method. Experimental results show that the proposed method can not only effectively extract bearing fault features, but also obtain a high identification accuracy for bearing fault patterns under single or variable speed.  相似文献   

3.
In order to further improve the accuracy of fault identification of rolling bearings, a fault diagnosis method based on the modified particle swarm optimization (MPSO) algorithm optimized least square support vector machine (LSSVM), combining parameter optimization variational mode decomposition (VMD) and multi-scale permutation entropy (MPE), was proposed. Firstly, to solve the problem of insufficient decomposition and mode mixing caused by the improper selection of mode component K and penalty factor α in VMD algorithm, the whale optimization algorithm (WOA) was used to optimize the penalty factor and mode component number in the VMD algorithm, and the optimal parameter combination (K, α) was obtained. Secondly, the optimal parameter combination (K, α) was used for the VMD of the rolling bearing vibration signal to obtain several intrinsic mode functions (IMFs). According to the Pearson correlation coefficient (PCC) criterion, the optimal IMF component was selected, and its optimal multi-scale permutation entropy was calculated to form the feature set. Finally, K-fold cross-validation was used to train the MPSO-LSSVM model, and the test set was input into the trained model for identification. The experimental results show that compared with PSO-SVM, LSSVM, and PSO-LSSVM, the MPSO-LSSVM fault diagnosis model has higher recognition accuracy. At the same time, compared with VMD-SE, VMD-MPE, and PSO-VMD-MPE, WOA-VMD-MPE can extract more accurate features.  相似文献   

4.
Due to the influence of signal-to-noise ratio in the early failure stage of rolling bearings in rotating machinery, it is difficult to effectively extract feature information. Variational Mode Decomposition (VMD) has been widely used to decompose vibration signals which can reflect more fault omens. In order to improve the efficiency and accuracy, a method to optimize VMD by using the Niche Genetic Algorithm (NGA) is proposed in this paper. In this method, the optimal Shannon entropy of modal components in a VMD algorithm is taken as the optimization objective, by using the NGA to constantly update and optimize the combination of influencing parameters composed of α and K so as to minimize the local minimum entropy. According to the obtained optimization results, the optimal input parameters of the VMD algorithm were set. The method mentioned is applied to the fault extraction of a simulated signal and a measured signal of a rolling bearing. The decomposition process of the rolling-bearing fault signal was transferred to the variational frame by the NGA-VMD algorithm, and several eigenmode function components were obtained. The energy feature extracted from the modal component containing the main fault information was used as the input vector of a particle swarm optimized support vector machine (PSO-SVM) and used to identify the fault type of the rolling bearing. The analysis results of the simulation signal and measured signal show that: the NGA-VMD algorithm can decompose the vibration signal of a rolling bearing accurately and has a better robust performance and correct recognition rate than the VMD algorithm. It can highlight the local characteristics of the original sample data and reduce the interference of the parameters selected artificially in the VMD algorithm on the processing results, improving the fault-diagnosis efficiency of rolling bearings.  相似文献   

5.
As a powerful tool for measuring complexity and randomness, multivariate multi-scale permutation entropy (MMPE) has been widely applied to the feature representation and extraction of multi-channel signals. However, MMPE still has some intrinsic shortcomings that exist in the coarse-grained procedure, and it lacks the precise estimation of entropy value. To address these issues, in this paper a novel non-linear dynamic method named composite multivariate multi-scale permutation entropy (CMMPE) is proposed, for optimizing insufficient coarse-grained process in MMPE, and thus to avoid the loss of information. The simulated signals are used to verify the validity of CMMPE by comparing it with the often-used MMPE method. An intelligent fault diagnosis method is then put forward on the basis of CMMPE, Laplacian score (LS), and bat optimization algorithm-based support vector machine (BA-SVM). Finally, the proposed fault diagnosis method is utilized to analyze the test data of rolling bearings and is then compared with the MMPE, multivariate multi-scale multiscale entropy (MMFE), and multi-scale permutation entropy (MPE) based fault diagnosis methods. The results indicate that the proposed fault diagnosis method of rolling bearing can achieve effective identification of fault categories and is superior to comparative methods.  相似文献   

6.
This paper proposes a novel fault diagnosis method for rolling bearing based on hierarchical refined composite multiscale fluctuation-based dispersion entropy (HRCMFDE) and particle swarm optimization-based extreme learning machine (PSO-ELM). First, HRCMFDE is used to extract fault features in the vibration signal at different time scales. By introducing the hierarchical theory algorithm into the vibration signal decomposition process, the problem of missing high-frequency signals in the coarse-grained process is solved. Fluctuation-based dispersion entropy (FDE) has the characteristics of insensitivity to noise interference and high computational efficiency based on the consideration of nonlinear time series fluctuations, which makes the extracted feature vectors more effective in describing the fault information embedded in each frequency band of the vibration signal. Then, PSO is used to optimize the input weights and hidden layer neuron thresholds of the ELM model to improve the fault identification capability of the ELM classifier. Finally, the performance of the proposed rolling bearing fault diagnosis method is verified and analyzed by using the CWRU dataset and MFPT dataset as experimental cases, respectively. The results show that the proposed method has high identification accuracy for the fault diagnosis of rolling bearings with varying loads and has a good load migration effect.  相似文献   

7.
To extract fault features of rolling bearing vibration signals precisely, a fault diagnosis method based on parameter optimized multi-scale permutation entropy (MPE) and Gath-Geva (GG) clustering is proposed. The method can select the important parameters of MPE method adaptively, overcome the disadvantages of fixed MPE parameters and greatly improve the accuracy of fault identification. Firstly, aiming at the problem of parameter determination and considering the interaction among parameters comprehensively of MPE, taking skewness of MPE as fitness function, the time series length and embedding dimension were optimized respectively by particle swarm optimization (PSO) algorithm. Then the fault features of rolling bearing were extracted by parameter optimized MPE and the standard clustering centers is obtained with GG clustering. Finally, the samples are clustered with the Euclid nearness degree to obtain recognition rate. The validity of the parameter optimization is proved by calculating the partition coefficient and average fuzzy entropy. Compared with unoptimized MPE, the propose method has a higher fault recognition rate.  相似文献   

8.
In order to detect the incipient fault of rolling bearings and to effectively identify fault characteristics, based on amplitude-aware permutation entropy (AAPE), an enhanced method named hierarchical amplitude-aware permutation entropy (HAAPE) is proposed in this paper to solve complex time series in a new dynamic change analysis. Firstly, hierarchical analysis and AAPE are combined to excavate multilevel fault information, both low-frequency and high-frequency components of the abnormal bearing vibration signal. Secondly, from the experimental analysis, it is found that HAAPE is sensitive to the early failure of rolling bearings, which makes it suitable to evaluate the performance degradation of a bearing in its run-to-failure life cycle. Finally, a fault feature selection strategy based on HAAPE is put forward to select the bearing fault characteristics after the application of the least common multiple in singular value decomposition (LCM-SVD) method to the fault vibration signal. Moreover, several other entropy-based methods are also introduced for a comparative analysis of the experimental data, and the results demonstrate that HAAPE can extract fault features more effectively and with a higher accuracy.  相似文献   

9.
Photovoltaic (PV) system diagnosis is a growing research domain likewise solar energy’s ongoing significant expansion. Indeed, efficient Fault Detection and Diagnosis (FDD) tools are crucial to guarantee reliability, avoid premature aging and improve the profitability of PV plants. In this paper, an on-line diagnosis method using the PV plant electrical output is presented. This entirely signal-based method combines variational mode decomposition (VMD) and multiscale dispersion entropy (MDE) for the purpose of detecting and isolating faults in a real grid-connected PV plant. The present method seeks a low-cost design, an ease of implementation and a low computation cost. Taking into account the innovation of applying these techniques to PV FDD, the VMD and MDE procedures as well as parameters identification are carefully detailed. The proposed FFD approach performance is assessed on a real rooftop PV plant with experimentally induced faults, and the first results reveal the MDE approach has good suitability for PV plants diagnosis.  相似文献   

10.
In order to accurately identify various types of ships and develop coastal defenses, a single feature extraction method based on slope entropy (SlEn) and a double feature extraction method based on SlEn combined with permutation entropy (SlEn&PE) are proposed. Firstly, SlEn is used for the feature extraction of ship-radiated noise signal (SNS) compared with permutation entropy (PE), dispersion entropy (DE), fluctuation dispersion entropy (FDE), and reverse dispersion entropy (RDE), so that the effectiveness of SlEn is verified, and SlEn has the highest recognition rate calculated by the k-Nearest Neighbor (KNN) algorithm. Secondly, SlEn is combined with PE, DE, FDE, and RDE, respectively, to extract the feature of SNS for a higher recognition rate, and SlEn&PE has the highest recognition rate after the calculation of the KNN algorithm. Lastly, the recognition rates of SlEn and SlEn&PE are compared, and the recognition rates of SlEn&PE are higher than SlEn by 4.22%. Therefore, the double feature extraction method proposed in this paper is more effective in the application of ship type recognition.  相似文献   

11.
The decomposition effect of variational mode decomposition (VMD) mainly depends on the choice of decomposition number K and penalty factor α. For the selection of two parameters, the empirical method and single objective optimization method are usually used, but the aforementioned methods often have limitations and cannot achieve the optimal effects. Therefore, a multi-objective multi-island genetic algorithm (MIGA) is proposed to optimize the parameters of VMD and apply it to feature extraction of bearing fault. First, the envelope entropy (Ee) can reflect the sparsity of the signal, and Renyi entropy (Re) can reflect the energy aggregation degree of the time-frequency distribution of the signal. Therefore, Ee and Re are selected as fitness functions, and the optimal solution of VMD parameters is obtained by the MIGA algorithm. Second, the improved VMD algorithm is used to decompose the bearing fault signal, and then two intrinsic mode functions (IMF) with the most fault information are selected by improved kurtosis and Holder coefficient for reconstruction. Finally, the envelope spectrum of the reconstructed signal is analyzed. The analysis of comparative experiments shows that the feature extraction method can extract bearing fault features more accurately, and the fault diagnosis model based on this method has higher accuracy.  相似文献   

12.
The early fault diagnosis of rolling bearings has always been a difficult problem due to the interference of strong noise. This paper proposes a new method of early fault diagnosis for rolling bearings with entropy participation. First, a new signal decomposition method is proposed in this paper: intrinsic time-scale decomposition based on time-varying filtering. It is introduced into the framework of complete ensemble intrinsic time-scale decomposition with adaptive noise (CEITDAN). Compared with traditional intrinsic time-scale decomposition, intrinsic time-scale decomposition based on time-varying filtering can improve frequency-separation performance. It has strong robustness in the presence of noise interference. However, decomposition parameters (the bandwidth threshold and B-spline order) have significant impacts on the decomposition results of this method, and they need to be artificially set. Aiming to address this problem, this paper proposes rolling-bearing fault diagnosis optimization based on an improved coyote optimization algorithm (COA). First, the minimal generalized refined composite multiscale sample entropy parameter was used as the objective function. Through the improved COA algorithm, optimal intrinsic time-scale decomposition parameters based on time-varying filtering that match the input signal are obtained. By analyzing generalized refined composite multiscale sample entropy (GRCMSE), whether the mode component is dominated by the fault signal is determined. The signal is reconstructed and decomposed again. Finally, the mode component with the highest energy in the central frequency band is selected for envelope spectrum variation for fault diagnosis. Lastly, simulated and experimental signals were used to verify the effectiveness of the proposed method.  相似文献   

13.
The complex and changeable marine environment surrounded by a variety of noise, including sounds of marine animals, industrial noise, traffic noise and the noise formed by molecular movement, not only interferes with the normal life of residents near the port, but also exerts a significant influence on feature extraction of ship-radiated noise (S-RN). In this paper, a novel feature extraction technique for S-RN signals based on optimized variational mode decomposition (OVMD), permutation entropy (PE), and normalized Spearman correlation coefficient (NSCC) is proposed. Firstly, with the mode number determined by reverse weighted permutation entropy (RWPE), OVMD decomposes the target signal into a set of intrinsic mode functions (IMFs). The PE of all the IMFs and SCC between each IMF with the raw signal are then calculated, respectively. Subsequently, feature parameters are extracted through the sum of PE weighted by NSCC for the IMFs. Lastly, the obtained feature vectors are input into the support vector machine multi-class classifier (SVM) to discriminate various types of ships. Experimental results indicate that five kinds of S-RN samples can be accurately identified with a recognition rate of 94% by the proposed scheme, which is higher than other previously published methods. Hence, the proposed method is more advantageous in practical applications.  相似文献   

14.
To address the difficulty of extracting the features of composite-fault signals under a low signal-to-noise ratio and complex noise conditions, a feature-extraction method based on phase-space reconstruction and maximum correlation Re’nyi entropy deconvolution is proposed. Using the Re’nyi entropy as the performance index, which allows for a favorable trade-off between sporadic noise stability and fault sensitivity, the noise-suppression and decomposition characteristics of singular-value decomposition are fully utilized and integrated into the feature extraction of composite-fault signals by the maximum correlation Re’nyi entropy deconvolution. Verification based on simulation, experimental data, and a bench test proves that the proposed method is superior to the existing methods regarding the extraction of composite-fault signal features.  相似文献   

15.
The fault diagnosis classification method based on wavelet decomposition and weighted permutation entropy (WPE) by the extreme learning machine (ELM) is proposed to address the complexity and non-smoothness of rolling bearing vibration signals. The wavelet decomposition based on ‘db3’ is used to decompose the signal into four layers and extract the approximate and detailed components, respectively. Then, the WPE values of the approximate (CA) and detailed (CD) components of each layer are calculated and composed to be the feature vectors, which are finally fed into the extreme learning machine with optimal parameters for classification. The comparative study of the simulations based on WPE and permutation entropy (PE) shows that the classification method of seven kinds of signals of normal bearing signals and six types of fault states (7 mils and 14 mils) based on WPE (CA, CD) with the number of nodes in the hidden layers of ELM determined by the five-fold cross-validation has the best performances, the training accuracy can reach 100%, and the testing accuracy can reach 98.57% with 37 nodes of the hidden layer by ELM. The proposed method using WPE (CA, CD) by ELM provides guidance for the multi-classification of normal bearing signals.  相似文献   

16.
The rolling bearing is a crucial component of the rotating machine, and it is particularly vital to ensure its normal operation. In addition, the selection of different category features will add uncertainty and bias to the classification results. In order to decrease the interference of these factors to fault diagnosis, a new method that automatically learns the features of the data combined with Markov transition field (MTF) and convolutional neural network (CNN) is proposed in this paper, namely MTF-CNN. The MTF contributes to convert the original time series into corresponding figures, and the CNN is used to extract the deep feature information in the figure to complete the fault diagnosis. The effectiveness of the proposed method is verified by two public data sets. The experimental results show that MTF-CNN can classify different types of faults, and the highest accuracy rate can reach 100%. Likewise, the classification accuracy of this method is higher than some existing methods.  相似文献   

17.
The prediction of time series is of great significance for rational planning and risk prevention. However, time series data in various natural and artificial systems are nonstationary and complex, which makes them difficult to predict. An improved deep prediction method is proposed herein based on the dual variational mode decomposition of a nonstationary time series. First, criteria were determined based on information entropy and frequency statistics to determine the quantity of components in the variational mode decomposition, including the number of subsequences and the conditions for dual decomposition. Second, a deep prediction model was built for the subsequences obtained after the dual decomposition. Third, a general framework was proposed to integrate the data decomposition and deep prediction models. The method was verified on practical time series data with some contrast methods. The results show that it performed better than single deep network and traditional decomposition methods. The proposed method can effectively extract the characteristics of a nonstationary time series and obtain reliable prediction results.  相似文献   

18.
Data-driven fault diagnosis methods for rotating machinery have developed rapidly with the help of deep learning methods. However, traditional intelligent fault diagnosis methods still have some limitations in fault feature extraction and the latest object detection theory has not been applied in fault diagnosis. To this end, a fault diagnosis method based on a sparse short-term Fourier transform (SSTFT) and object detection theory is developed in this paper. First, a sparse constraint is introduced in time-frequency analysis to improve the time-frequency resolution of the model without cross-term interference and proximal gradient descent (PGD) is adopted to quickly and effectively optimize the model to obtain a high-quality time-frequency representation (TFR). Second, a fault diagnosis model based on a region-based convolutional neural network (RCNN) is built; the model can extract multiple regions that can characterize fault features from the TFR. This process avoids the interference of irrelevant vibration components and improves the interpretability of the fault diagnosis model. Finally, multicategory rolling bearing fault identification is realized. The effectiveness of the proposed method is validated by simulation signals and bearing experiments. The results indicate that the proposed method is more effective than existing methods.  相似文献   

19.
Slope entropy (Slopen) has been demonstrated to be an excellent approach to extracting ship-radiated noise signals (S-NSs) features by analyzing the complexity of the signals; however, its recognition ability is limited because it extracts the features of undecomposed S-NSs. To solve this problem, in this study, we combined complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) to explore the differences of Slopen between the intrinsic mode components (IMFs) of the S-NSs and proposed a single-IMF optimized feature extraction approach. Aiming to further enhance its performance, the optimized combination of dual-IMFs was selected, and a dual-IMF optimized feature extraction approach was also proposed. We conducted three experiments to demonstrate the effectiveness of CEEMDAN, Slopen, and the proposed approaches. The experimental and comparative results revealed both of the proposed single- and dual-IMF optimized feature extraction approaches based on Slopen and CEEMDAN to be more effective than the original ship signal-based and IMF-based feature extraction approaches.  相似文献   

20.
The amplitudes of incipient fault signals are similar to health state signals, which increases the difficulty of incipient fault diagnosis. Multi-scale reverse dispersion entropy (MRDE) only considers difference information with low frequency range, which omits relatively obvious fault features with a higher frequency band. It decreases recognition accuracy. To defeat the shortcoming with MRDE and extract the obvious fault features of incipient faults simultaneously, an improved entropy named hierarchical multi-scale reverse dispersion entropy (HMRDE) is proposed to treat incipient fault data. Firstly, the signal is decomposed hierarchically by using the filter smoothing operator and average backward difference operator to obtain hierarchical nodes. The smoothing operator calculates the mean sample value and the average backward difference operator calculates the average deviation of sample values. The more layers, the higher the utilization rate of filter smoothing operator and average backward difference operator. Hierarchical nodes are obtained by these operators, and they can reflect the difference features in different frequency domains. Then, this difference feature is reflected with MRDE values of some hierarchical nodes more obviously. Finally, a variety of classifiers are selected to test the separability of incipient fault signals treated with HMRDE. Furthermore, the recognition accuracy of these classifiers illustrates that HMRDE can effectively deal with the problem that incipient fault signals cannot be easily recognized due to a similar amplitude dynamic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号