首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
A key enzyme for the biosynthesis and bioengineering of heparin, 3-O-sulfotransferase-1 (3-OST-1), was expressed and purified in Gram-positive Bacillus subtilis and Bacillus megaterium. Western blotting, protein sequence analysis, and enzyme activity measurement confirmed the expression. The enzymatic activity of 3-OST-1 expressed in Bacillus species were found to be similar to those found when expressed in Escherichia coli. The endotoxin level in 3-OST-1 from B. subtilis and B. megaterium were 104–105-fold lower than that of the E. coli-expressed 3-OST-1, which makes the Bacillus expression system of particular interest for the generation of pharmaceutical grade raw heparin from nonanimal sources.  相似文献   

2.
A series of simple or/and aryl, heteryl hydrazono pyrazolyl-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazin-6-yl)-2H-pyran-2-one derivatives have been efficiently synthesized in excellent yields via one-pot, multi-component approach. The importance of this methodology is that in a one-pot operation four new bonds (3C–N and 1C–S) are generated. The structure of compound 5a was confirmed by single-crystal X-ray diffraction. The newly synthesized compounds were evaluated for their in vitro antimicrobial activity against gram-positive bacteria (Staphylococcusaureus and Bacillussubtilis), gram-negative bacteria (Escherichiacoli andKlebsiellapneumoniae), antifungal activity against Candida albicans, and nematicidal activity against Meloidogyneincognita. Among all the compounds 6f showed excellent antimicrobial and nematicidal activity against tested bacteria, fungi, and nematodes.  相似文献   

3.
The natural compound ravenelin was isolated from the biomass extracts of Exserohilum rostratum fungus, and its antimicrobial, antiplasmodial, and trypanocidal activities were evaluated. Ravenelin was isolated by column chromatography and HPLC and identified by NMR and MS. The susceptibility of Gram-positive and Gram-negative bacteria strains to ravenelin was determined by microbroth dilution assay. Cytotoxicity was evaluated in hepatocarcinoma cells (HepG2) and BALB/c peritoneal macrophages by using MTT. SYBR Green I-based assay was used in the asexual stages of Plasmodium falciparum. Trypanocidal activity was tested against the epimastigote and intracellular amastigote forms of Trypanosoma cruzi. Ravenelin was active against Gram-positive bacteria strains, with emphasis on Bacillus subtilis (MIC value of 7.5 µM). Ravenelin’s antiparasitic activities were assessed against both the epimastigote (IC50 value of 5 ± 1 µM) and the intracellular amastigote forms of T. cruzi (IC50 value of 9 ± 2 µM), as well as against P. falciparum (IC50 value of 3.4 ± 0.4 µM). Ravenelin showed low cytotoxic effects on both HepG2 (CC50 > 50 µM) and peritoneal macrophage (CC50 = 185 ± 1 µM) cells with attractive selectivity for the parasites (SI values > 15). These findings indicate that ravenelin is a natural compound with both antibacterial and antiparasitic activities, and considerable selectivity indexes. Therefore, ravenelin is an attractive candidate for hit-to-lead development.  相似文献   

4.
Nanfeng mandarins (Citrus reticulata Blanco cv. Kinokuni), Xunwu mandarins (Citrus reticulata Blanco), Yangshuo kumquats (Citrus japonica Thunb) and physiologically dropped navel oranges (Citrus sinensis Osbeck cv. Newhall) were used as materials to extract peel essential oils (EOs) via hydrodistillation. The chemical composition, and antibacterial and antioxidant activities of the EOs were investigated. GC-MS analysis showed that monoterpene hydrocarbons were the major components and limonene was the predominate compound for all citrus EOs. The antibacterial testing of EOs against five different bacteria (Bacillus subtilis, Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa and Salmonella typhimurium) was carried out using the filter paper method and the broth microdilution method. Kumquat EO had the best inhibitory effect on B. subtilis, E. coli and S. typhimurium with MIC (minimum inhibitory concentration) values of 1.56, 1.56 and 6.25 µL/mL, respectively. All citrus EOs showed the antioxidant activity of scavenging DPPH and ABTS free radicals in a dose-dependent manner. Nanfeng mandarin EO presented the best antioxidant activity, with IC50 values of 15.20 mg/mL for the DPPH assay and 0.80 mg/mL for the ABTS assay. The results also showed that the antibacterial activities of EOs might not be related to their antioxidant activities.  相似文献   

5.
A series of ruthenium(II) complexes with N-heterocyclic carbene (NHC) ligands of the general type (arene)(NHC)Ru(II)X2 (where X = halide) was prepared, characterized, and evaluated as antibacterial agents in comparison to the respective metal free benzimidazolium cations. The ruthenium(II) NHC complexes generally triggered stronger bacterial growth inhibition than the metal free benzimidazolium cations. The effects were much stronger against Gram-positive bacteria (Bacillus subtilis and Staphylococcus aureus) than against Gram-negative bacteria (Escherichia coli, Acinetobacter baumannii, Pseudomonas aeruginosa), and all complexes were inactive against the fungus Candida albicans. Moderate inhibition of bacterial thioredoxin reductase was confirmed for selected complexes, indicating that inhibition of this enzyme might be a contributing factor to the antibacterial effects.  相似文献   

6.
To identify and analyze the characteristics of the microorganisms involved in the formation of the desirable flavor of Doenjang, a total of 179 strains were isolated from ninety-four Doenjang collected from six regions in South Korea, and fourteen strains were selected through a sensory evaluation of the aroma of each culture. The enzyme activities of amylase, protease and lipase was shown in the various strains. Bacillus sp.-K3, Bacillus sp.-K4 and Bacillus amyloliquefaciens-J2 showed relatively high protease activity, at 317.1 U, 317.3 U and 319.5 U, respectively. The Bacillus sp.-K1 showed the highest lipase activity at 2453.6 U. In the case of amylase, Bacillus subtilis-H6 showed the highest activity at 4105.5 U. The results of the PCA showed that Bacillus subtilis-H2, Bacillus subtilis-H3, and Bacillus sp.-K2 were closely related to the production of 3-hydroxy-2-butanone (23.51%~43.37%), and that Bacillus subtilis-H5 and Bacillus amyloliquefaciens-J2 were significantly associated with the production of phenethyl alcohol (0.39% and 0.37%). The production of peptides was observed to vary among the Bacillus cultures such as Val-Val-Pro-Pro-Phe-Leu and Pro-Ala-Glu-Val-Leu-Asp-Ile. These peptides are precursors of related volatile flavor compounds created in Doenjang via the enzymatic or non-enzymatic route; it is expected that these strains could be used to enhance the flavor of Doenjang.  相似文献   

7.
The aim of this experimental study was to isolate and partially purify protease enzyme from Bacillus cereus and Bacillus subtilis. Protease enzyme is obtained by inducing spore genesis of bacteria from Bacillus species in suitable nutrient plates. The partial purification was realized by applying, respectively, ammonium sulfate precipitation, dialysis, and DEAE-cellulose ion-exchange chromatography to the supernatant that was produced later. Optimum pH, optimum temperature, pH stability, and temperature stability were determined, as well as the effects of pH, temperature, substrate concentration, reaction time, and inhibitors and activators on enzyme activity. In addition, the molecular mass of the obtained enzyme was investigated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The specific activity of partially purified enzyme from B. subtilis was determined to be 84 U/mg. The final enzyme preparation was eight-fold more pure than the crude homogenate. The molecular mass of the partially purified enzyme was found to be 45 kDa by using SDS-PAGE. The protease enzyme that was partially purified from B. cereus was purified 1.2-fold after ammonium sulfate precipitation. The molecular mass of the partially purified enzyme was determined to be 37 kDa by using SDS-PAGE.  相似文献   

8.
Dairy mastitis is a disease of dairy cattle caused by a variety of pathogenic microorganisms which has biought huge economic losses aused huge economic losses to the world. In this paper, Harmine derivatives and tetrahydro-β-carboline derivatives synthesized by the splice method are shown to have a good inhibitory effect on the pathogenic bacteria of dairy mastitis. The results of a bacteriostatic test on pathogenic bacteria of dairy cow mastitis (S. dysgalactiae, S. pyogenes, B. subtilis and P. vulgaris) showed that compound 7l had the best bacteriostatic effect on Streptococcus dysgalactiae, with a mic value of 43.7 μ g/mL. When the concentration of 7l was 1 × MIC and 2 × MIC, it had a significant inhibitory effect on Streptococcus dysgalactiae, and there was almost no growth of Streptococcus dysgalactiae at 4 × MIC. The binding properties of target compound 7l to amine oxidase [flavin-containing] A protein were simulated by the molecular docking technique. The ligand 7l achieved strong binding with the receptor through three hydrogen bonds. The hydrogen bonds were amino acid residues thr-52, arg-51 and ser-24, which are the main force for the compound to bind to active sites.  相似文献   

9.
Bacillus subtilis fmb60, which has broad-spectrum antimicrobial activities, was isolated from plant straw compost. A hybrid NRPS/PKS cluster was screened from the genome. Sixteen secondary metabolites produced by the gene cluster were isolated and identified using LC-HRMS and NMR. Three lipoamides D–F (1–3) and two amicoumacin derivatives, amicoumacins D, E (4, 5), were identified, and are reported here for the first time. Lipoamides D–F exhibited strong antibacterial activities against harmful foodborne bacteria, with the MIC ranging from 6.25 to 25 µg/mL. Amicoumacin E scavenged 38.8% of ABTS+ radicals at 1 mg/mL. Direct cloning and heterologous expression of the NRPS/PKS and ace gene cluster identified its importance for the biosynthesis of amicoumacins. This study demonstrated that there is a high potential for biocontrol utilization of B. subtilis fmb60, and genome mining for clusters of secondary metabolites of B. subtilis fmb60 has revealed a greater biosynthetic potential for the production of novel natural products than previously anticipated.  相似文献   

10.
Efficient isolation of lignocellulolytic bacteria is essential for the utilization of lignocellulosic biomass. In this study, bacteria with cellulolytic, xylanolytic, and lignolytic activities were isolated from environmental sites such as mountain, wetland, and mudflat using isolation media containing the combination of lignocellulose components (cellulose, xylan, and lignin). Eighty-nine isolates from the isolation media were characterized by analyzing taxonomic ranks and cellulolytic, xylanolytic, and lignolytic activities. Most of the cellulolytic bacteria showed multienzymatic activities including xylanolytic activity. The isolation media without lignin were efficient in isolating bacteria exhibiting multienzymatic activities even including lignolytic activity, whereas a lignin-containing medium was effective to isolate bacteria exhibiting lignolytic activity only. Multienzymatic activities were mainly observed in Bacillus and Streptomyces, while Burkholderia was the most abundant genus with lignolytic activity only. This study provides insight into isolation medium for efficient isolation of lignocellulose-degrading microorganisms.  相似文献   

11.
The current study was intended to explore the phytochemical profiling and therapeutic activities of Putranjiva roxburghii Wall. Crude extracts of different plant parts were subjected to the determination of antioxidant, antimicrobial, antidiabetic, cytotoxic, and protein kinase inhibitory potential by using solvents of varying polarity ranges. Maximum phenolic content was notified in distilled water extracts of the stem (DW-S) and leaf (DW-L) while the highest flavonoid content was obtained in ethyl acetate leaf (EA-L) extract. HPLC-DAD analysis confirmed the presence of various polyphenols, quantified in the range of 0.02 ± 0.36 to 2.05 ± 0.18 μg/mg extract. Maximum DPPH scavenging activity was expressed by methanolic extract of the stem (MeOH-S). The highest antioxidant capacity and reducing power was shown by MeOH-S and leaf methanolic extract (MeOH-L), respectively. Proficient antibacterial activity was shown by EA-L extract against Bacillus subtilis and Escherichia coli. Remarkable α-amylase and α-glucosidase inhibition potential was expressed by ethyl acetate fruit (EA-F) and n-Hexane leaf (nH-L) extracts, respectively. In case of brine shrimp lethality assay, 41.67% of the extracts (LC50 < 50 µg/mL) were considered as extremely cytotoxic. The test extracts also showed mild antifungal and protein kinase inhibition activities. The present study explores the therapeutic potential of P. roxburghii and calls for subsequent studies to isolate new bioactive leads through bioactivity-guided isolation.  相似文献   

12.
Solanum elaeagnifolium is among the invasive plants of Morocco; studies on its chemical composition and biological activities are few in number in Morocco. S. elaeagnifolium has shown molluscicidal and nematicidal and cancer-inhibitory effects, anti-inflammatory, analgesic activity, and antibacterial activity. The objective of this research is to improve this plant and assess its antibacterial and antioxidant properties as well as its total polyphenolic content (TPC) and total flavonoid content (TFC). The Folin-Ciocalteu method and the aluminium-trichloride method were used to determine TPC and TFC in hydro-ethanolic (HEE) and hydro-acetonic (HAE) leaf extract. Three assays were performed to determine the antioxidant activity: the DPPH test (radical 2,2’-diphenyl-1-picrylhydrazyl), the FRAP test (Ferric Reducing Antioxidant Power), and the TAC test. Disk diffusion and microdilution were used to test antibacterial activity against four pathogenic bacteria and Candida albicans. The hydro-ethanolic extract 2.54 ± 0.4 mg EAG/g has a greater polyphenol concentration than the hydro-acetonic extract 1.58 ± 0.03 mg EAG/g. Although the flavonoid content of the hydro-acetonic extract (0.067 ± 0.001 mg EQ/g) is larger than that of the hydro-ethanolic extract (0.012 ± 0.001 mg EQ/g), the flavonoid content of the hydro-ethanolic extract (0.012 ± 0.001 mg EQ/g). The DPPH values were IC-50 = 0.081 ± 0.004 mg/mL for hydro-ethanoic extract and 0.198 ± 0.019 mg/mL for hydro-acetonic extract, both extracts superior to BHT (0.122 ± 0.021 g/mL). While the FRAP assay showed a low iron-reducing power values for both extracts compared to BHT), the overall antioxidant activity of the two extracts was found to be considerable. The overall antioxidant activity of the hydro-ethanolic extract was 8.95 ± 0.42 mg EAA/g, whereas the total antioxidant activity of the hydro-acetonic extract was 6.44 ± 0.61 mg EAA/g. In comparison with the antibiotic Erythromycin, HAE and HEE from S. elaeagnifolium leaves demonstrated significant antibacterial action. HAE had the best inhibitory efficacy against Bacillus subtilis DSM 6333, with an inhibition diameter of 10.5 ± 0.50 mm and a MIC of 7.5 ± 0.00 mg/mL, as well as against Proteus mirabilis ATCC 29906, with an inhibitory diameter of 8.25 ± 0.75 mm and a MIC of 15 ± 0.00 mg/mL.  相似文献   

13.
Three new polycyclic phenol derivatives, 2-acetyl-4-hydroxy-6H-furo [2,3-g]chromen-6-one (1), 2-(1′,2′-dihydroxypropan-2′-yl)-4-hydroxy-6H-furo [2,3-g][1]benzopyran-6-one (2) and 3,8,10-trihydroxy-4,9-dimethoxy-6H-benzo[c]chromen-6-one (8), along with seven known ones (3–7, 9 and 10) were isolated for the first time from the leaves of Spermacoce latifolia. Their structures were determined by spectroscopic analysis and comparison with literature-reported data. These compounds were tested for their in vitro antibacterial activity against four Gram-(+) bacteria: Staphyloccocus aureus (SA), methicillin-resistant Staphylococcus aureus (MRSA), Bacillus cereus (BC), Bacillus subtilis (BS), and the Gram-(−) bacterium Escherichia coli. Compounds 1, 2, 5 and 8 showed antibacterial activity toward SA, BC and BS with MIC values ranging from 7.8 to 62.5 µg/mL, but they were inactive to MRSA. Compound 4 not only showed the best antibacterial activity against SA, BC and BS, but it further displayed significant antibacterial activity against MRSA (MIC 1.95 µg/mL) even stronger than vancomycin (MIC 3.9 µg/mL). No compounds showed inhibitory activity toward E. coli. Further bioassay indicated that compounds 1, 4, 5, 6, 8 and 9 showed in vitro α-glucosidase inhibitory activity, among which compound 9 displayed the best α-glucosidase inhibitory activity with IC50 value (0.026 mM) about 15-fold stronger than the reference compound acarbose (IC50 0.408 mM). These results suggested that compounds 4, 8 and 9 were potentially highly valuable compounds worthy of consideration to be further developed as an effective anti-MRSA agent or effective α-glucosidase inhibitors, respectively. In addition, the obtained data also supported that S. latifolia was rich in structurally diverse bioactive compounds worthy of further investigation, at least in searching for potential antibiotics and α-glucosidase inhibitors.  相似文献   

14.
Biopolymer active packaging is known to have low mechanical strength and highly brittle. Regardless to its disadvantage, polymers from natural sources have attracted serious attention since the non-renewable sources for example petroleum, the major precursor of plastic manufacturing become depleted. Starch-Chitosan for instance is a hybrid film that entirely green as it produced from a renewable material and totally degradable. The addition of chitosan in film packaging able to kill pathogen hence increases the food shelf life. Through nanotechnology advance, nanomaterial can be used for material reinforcement. Nowadays, greener approach could be applied by incorporating natural cellulose nanofiber into the film matrix. Oil palm empty fruit bunch (OPEFB) fiber that rich of cellulose contents could be treated chemically to purify the cellulose in the fiber. Cellulose fiber obtained was cut to a nano-size using acid hydrolysis. Transmission Electron Microscopy (T.E.M) obtained shown the nanofiber size was ranged between 1-100 nm in diameter. Nanocomposite film formulation, was constructed by varying the cellulose nanofiber incorporation between 2-10% per weight of starch. The strength of the films was measured as well as antimicrobial properties. The addition of 2% cellulose nanofiber into the film matrix exhibits high tensile strength with 5.25 Mpa compared to starch-chitosan hybrid film with 3.96 Mpa. However, no significant improvement in tensile strength was distinguished beyond that ratio. Antimicrobial analysis shows that the addition of cellulose nanofiber could increase the inhibition effect towards gram-positive bacteria but not towards gram-negative bacteria. The addition of 2% cellulose nanofiber increased the inhibition diameter towards gram positive bacteria, Bacillus subtilis up to 33%. However, inhibition towards Bacillus subtilis decreased with the incorporation of more cellulose nanofiber. In gram-negative bacteria Escherichia coli, the addition of cellulose nanofiber does not give significant effect to bacterial. In General, the addition of the unique structure of cellulose nanofiber in the starch based polymer system could enhance the mechanical strength of the film and increase the inhibition of the gram positive bacteria.  相似文献   

15.
16.
The purpose of this study was to find the biological propensities of the vegetable plant Pleurospermum candollei by investigating its phytochemical profile and biological activities. Phytochemical analysis was done by spectroscopic methods to investigate the amount of total polyphenols, and biological evaluation was done by the different antioxidant, enzyme inhibitory (tyrosinase, α-amylase, and α-glucosidase), thrombolytic, and antibacterial activities. The highest amount of total phenolic and flavonoid contents was observed in methanolic extract (240.69 ± 2.94 mg GAE/g and 167.59 ± 3.47 mg QE/g); the fractions showed comparatively less quantity (57.02 ± 1.31 to 144.02 ± 2.11 mg GAE/g, and 48.21 ± 0.75 to 96.58 ± 2.30 mg QE/g). The effect of these bioactive contents was also related to biological activities. GCMS analysis led to the identification of bioactive compounds with different biological effects from methanolic extract (antioxidant; 55.07%, antimicrobial; 56.41%), while the identified compounds from the n-hexane fraction with antioxidant properties constituted 67.86%, and those with antimicrobial effects constituted 82.95%; however, the synergetic effect of polyphenols may also have contributed to the highest value of biological activities of methanolic extract. Molecular docking was also performed to understand the relationship of identified secondary metabolites with enzyme-inhibitory activities. The thrombolytic activity was also significant (40.18 ± 1.80 to 57.15 ± 1.10 % clot lysis) in comparison with streptokinase (78.5 ± 1.53 to 82.34 ± 1.25% clot lysis). Methanolic extract also showed good activity against Gram-positive strains of bacteria, and the highest activity was observed against Bacillus subtilis. The findings of this study will improve our knowledge of phytochemistry, and biological activities of P. candollei, which seems to be a ray of hope to design formulations of natural products for the improvement of health and prevention of chronic diseases; however, further research may address the development of novel drugs for use in pharmaceuticals.  相似文献   

17.
Thiohydantoin and quinolone derivatives have attracted researchers’ attention because of a broad spectrum of their medical applications. The aim of our research was to synthesize and analyze the antimicrobial properties of novel 2-thiohydantoin and 2-quinolone derivatives. For this purpose, two series of hybrid compounds were synthesized. Both series consisted of 2-thiohydantoin core and 2-quinolone derivative ring, however one of them was enriched with an acetic acid group at N3 atom in 2-thiohydantoin core. Antibacterial properties of these compounds were examined against bacteria: Staphylococcus aureus, Bacillus subtilis, Enterococcus faecalis, Escherichia coli, Pseudomonas aeruginosa, and Klebsiella pneumoniae. The antimicrobial assay was carried out using a serial dilution method to obtain the MIC. The influence of blue light irradiation on the tested compounds was investigated. The relative yield of singlet oxygen (1O2*, 1Δg) generation upon excitation with 420 nm was determined by a comparative method, employing perinaphthenone (PN) as a standard. Antimicrobial properties were also investigated after blue light irradiation of the suspensions of the hybrids and bacteria placed in microtitrate plates. Preliminary results confirmed that some of the hybrid compounds showed bacteriostatic activity to the reference Gram-positive bacterial strains and a few of them were bacteriostatic towards Gram-negative bacteria, as well. Blue light activation enhanced bacteriostatic effect of the tested compounds.  相似文献   

18.
Ligilactobacillus equi is common in the horse intestine, alleviates the infection of Salmonella, and regulates intestinal flora. Despite this, there have been no genomic studies on this species. Here, we provide the genomic basis for adaptation to the intestinal habitat of this species. We sequenced the genome of L. equi IMAU81196, compared this with published genome information from three strains in NCBI, and analyzed genome characteristics, phylogenetic relationships, and functional genes. The mean genome size of L. equi strains was 2.08 ± 0.09 Mbp, and the mean GC content was 39.17% ± 0.19%. The genome size of L. equi IMAU81196 was 1.95 Mbp, and the GC content was 39.48%. The phylogenetic tree for L. equi based on 1454 core genes showed that the independent branch of strain IMAU81196 was far from the other three strains. In terms of genomic characteristics, single-nucleotide polymorphism (SNP) sites, rapid annotation using subsystem technology (RAST), carbohydrate activity enzymes (CAZy), and predictions of prophage, we showed that strain L. equi JCM 10991T and strain DSM 15833T are not equivalent strains.It is worth mentioning thatthestrain of L. equi has numerous enzymes related to cellulose degradation, and each L. equi strain investigated contained at least one protophage. We speculate that this is the reason why these strains are adapted to the intestinal environment of horses. These results provide new research directions for the future.  相似文献   

19.
The present study assessed the genotoxicity, the possibility of inhibiting selected enzymes, and the microbial activity of lyophilisate from 3-year-old A. arborescens leaves obtained from controlled crops. The lyophilisate from 3-year-old A. arborescens leaves was standardized for aloin A and aloenin A content. Moreover, concentrations of polyphenolic compounds and phenolic acids were determined. The first stage of the research was to determine genotoxicity using the comet test, which confirmed the safety of A. arborescens. Assays of enzymatic inhibition were performed for hyaluronidase (IC50 = 713.24 ± 41.79 µg/mL), α-glucosidase (IC50 = 598.35 ± 12.58 µg/mL), acetylcholinesterase and butyrylcholinesterase (1.16 vs. 0.34 µM of eserine/g d.m., respectively). The next stage of the research was to determine the ability of the healing properties using the scratch test, which showed a positive response using the extract. Microbial activity was evaluated and obtained against Gram-negative and Gram-positive bacteria and yeasts. We concluded that A. arborescens leaf gel meets the important conditions for plant raw materials to obtain semi-solid forms of herbal medicinal products.  相似文献   

20.
The red macroalga Gelidium latifolium is widely distributed in the coastal areas of Indonesia. However, current knowledge on its potential biological activities is still limited. In this study, we investigated the potential bioactive compounds in Gelidium latifolium ethanol extract (GLE), and its cytotoxic effects against the murine B16-F10 melanoma cell line. GLE shows high total phenolic content (107.06 ± 17.42 mg GAE/g) and total flavonoid content (151.77 ± 3.45 mg QE/g), which potentially contribute to its potential antioxidant activity (DPPH = 650.42 ± 2.01 µg/mL; ABTS = 557.01 ± 1.94 µg/mL). ESI-HR-TOF-MS analysis revealed large absorption in the [M-H]- of 327.2339 m/z, corresponding to the monoisotopic molecular mass of brassicolene. The presence of this compound potentially contributes to GLE’s cytotoxic activity (IC50 = 84.29 ± 1.93 µg/mL). Furthermore, GLE significantly increased the number of apoptotic cells (66.83 ± 3.06%) compared to controls (18.83 ± 3.76%). Apoptosis was also confirmed by changes in the expression levels of apoptosis-related genes (i.e., p53, Bax, Bak, and Bcl2). Downregulated expression of Bcl2 indicates an intrinsic apoptotic pathway. Current results suggest that components of Gelidium latifolium should be further investigated as possible sources of novel antitumor drugs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号