首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
通过热解自聚合多巴胺法制备了氮掺杂空心碳微球(N-HCMS), 并采用微波辅助乙二醇还原方法把Pt纳米粒子负载于N-HCMS上制得了Pt/N-HCMS催化剂. 催化剂的表面形貌、晶体结构及其比表面积和孔径分布等分别采用扫描电子显微镜、透射电子显微镜、X射线衍射仪及比表面分析仪等进行表征. 采用循环伏安法和线性扫描伏安法研究了Pt/N-HCMS 催化剂在酸性条件下的电催化氧还原性能. Pt/N-HCMS 催化剂由于Pt纳米粒子的均匀分散、N-HCMS载体的快速电子传递及其独特的微孔和中空结构而具有很高的电催化氧还原活性, 其质量比活性是E-TEK Pt/C 催化剂的近两倍. Pt/N-HCMS 催化剂还具有优良的稳定性. 本工作对于开发高性能的燃料电池阴极催化剂具有重要意义.  相似文献   

2.
氧还原反应是决定燃料电池、金属-空气电池等多种新型清洁能源存储与转化技术之性能与应用的关键反应. 铂及其合金是目前催化活性最好的氧还原反应催化剂,但其高昂的成本限制了规模化应用. 在小尺寸效应作用下,微纳米结构催化剂颗粒在电极制备与电化学反应过程中的团聚限制了催化剂本征催化活性的充分发挥. 本文基于喷雾热解技术,发展了一种基于内嵌钴/氮掺杂多孔碳三维石墨烯笼的高活性、抗团聚非贵金属氧还原反应催化剂. 此结构中,金属有机骨架化合物ZIF-67衍生的钴/氮掺杂多孔碳纳米结构是催化氧还原反应的活性中心,包覆其外的三维石墨烯笼不仅可在钴/氮掺杂碳纳米结构之间构建连续的三维载流子传导网络,且可高效抑制其在催化剂制备与电化学反应过程中的团聚与活性损失. 在碱性电解液中,此类非贵金属催化剂表现出可与铂基催化剂媲美的氧还原反应活性和优异的稳定性.  相似文献   

3.
高氧还原活性担载铂催化剂的研发是加快质子交换膜燃料电池商业化进程的主要手段之一。以石墨烯为碳源,1,10-菲啰啉为氮源,FeCl3为铁源,用浸渍法制备铁氮掺杂石墨烯(Fe/N-G)载体,并通过乙二醇还原法获得PtFe/N-G催化剂,探究铁氮原子的引入对石墨烯担载铂催化剂氧还原反应催化活性的影响。采用X射线衍射、比表面积和孔径分布测试、X射线光电子能谱等表征手段对载体及催化剂结构进行表征,使用电化学方法对载体和催化剂的氧还原反应活性进行测试。结果表明,PtFe/N-G催化剂的氧还原反应起始电位及半波电位分别为0.96 V、0.83 V,优于相同Pt担载量的商业20%Pt/C催化剂。铁氮掺杂后,石墨烯载体具有较大的孔径更有利于氧还原反应过程中生成物与反应物的传递,PtFe/N-G催化剂中存在吡啶氮和Fe-N型氮与铂纳米颗粒的协同催化,以及铂纳米颗粒与铁氮掺杂石墨烯载体间的相互作用,是PtFe/N-G催化剂具有优异的氧还原催化活性的可能原因。  相似文献   

4.
氧还原反应催化剂的性能直接影响着能源转换和存储器件如燃料电池和金属-空气电池的性能. 开发低成本、高性能的非铂族金属氧还原催化剂对于这类器件的实际应用和商业化十分重要,因此备受关注. 氮掺杂的石墨烯/碳纳米管复合物同时具备碳纳米管的良好导电性能和有利于传质的三维网络结构优点,以及氮掺杂石墨烯的高活性优点,因此有望发展为这类可替代铂族催化剂的氧还原电催化剂之一,但目前其催化性能还需进一步提高. 本文研究发现通过在氮掺杂石墨烯/碳纳米管复合物的过程中引入铁元素可以有效提高催化剂的氧还原活性,并且发现通过在热处理和氮掺杂过程中加入二氧化硅纳米颗粒及随后除去二氧化硅,可以在氮掺杂的石墨烯/碳纳米管复合物材料中有效地形成多孔结构. 这种多孔结构的形成不仅可以在复合物中引入更多的高活性催化位点,而且有利于暴露更多的催化活性位并促进氧还原反应中的传质过程. 结合碳纳米管、石墨烯和多孔结构的三者优点,所制备的多孔氮掺杂碳材料表现出优异的电催化氧还原性能. 进一步的实验表明,这类材料还表现出优异的抗甲醇中毒能力和良好的稳定性,因此在性能改进后有望用于燃料电池等能量转换与存储器件.  相似文献   

5.
通过模板法制备了一种新型耐甲醇氧还原电催化剂——氮掺杂中空碳微球@铂纳米粒子复合材料(HNCMS@PtNPs)。首先,将铂纳米粒子负载于氨基化二氧化硅微球上,获得PtNPs/SiO_2复合材料。然后通过多巴胺自聚合反应在PtNPs/SiO_2复合材料上包裹聚多巴胺(PDA)膜,将其在氮气气氛中直接进行碳化处理并通过氢氟酸溶液刻蚀去除SiO_2,获得了内嵌有PtNPs的氮掺杂中空碳微球,标记为HNCMS@PtNPs复合材料。采用扫描电子显微镜、透射电子显微镜、X射线衍射仪、拉曼光谱仪、比表面积分析仪和X射线光电子能谱仪对HNCMS@PtNPs复合材料的形貌和结构进行了表征。采用循环伏安法和线性扫描伏安法研究了HNCMS@PtNPs复合材料的电催化氧还原性能。结果表明:HNCMS@PtNPs催化剂的Pt载量高达11.9%(w,质量分数),对氧还原反应具有高电催化活性、高稳定性和优良的抗甲醇性能,是一种具有应用潜力的直接甲醇燃料电池(DMFCs)阴极电催化剂。  相似文献   

6.
通过模板法制备了一种新型耐甲醇氧还原电催化剂——氮掺杂中空碳微球@铂纳米粒子复合材料(HNCMS@PtNPs)。首先,将铂纳米粒子负载于氨基化二氧化硅微球上,获得PtNPs/SiO2复合材料。然后通过多巴胺自聚合反应在PtNPs/SiO2复合材料上包裹聚多巴胺(PDA)膜,将其在氮气气氛中直接进行碳化处理并通过氢氟酸溶液刻蚀去除SiO2,获得了内嵌有PtNPs的氮掺杂中空碳微球,标记为HNCMS@PtNPs复合材料。采用扫描电子显微镜、透射电子显微镜、X射线衍射仪、拉曼光谱仪、比表面积分析仪和X射线光电子能谱仪对HNCMS@PtNPs复合材料的形貌和结构进行了表征。采用循环伏安法和线性扫描伏安法研究了HNCMS@PtNPs复合材料的电催化氧还原性能。结果表明:HNCMS@PtNPs催化剂的Pt载量高达11.9%(w,质量分数),对氧还原反应具有高电催化活性、高稳定性和优良的抗甲醇性能,是一种具有应用潜力的直接甲醇燃料电池(DMFCs)阴极电催化剂。  相似文献   

7.
吕雅茹  翟雪静  王珊  徐虹  王锐  臧双全 《催化学报》2021,42(3):490-500,中插53-中插60
氧还原反应在一些能源转换系统如金属-空气电池中起着至关重要的作用.目前贵金属基材料(Pt/C)被认为是最有效的氧还原电催化剂,然而价格昂贵和储量有限等因素限制了它的商业化应用,因此探索高效的非贵金属氧还原电催化剂具有重要的意义.近年来,负载过渡金属铁的多孔碳催化剂由于独特的结构和优异的氧还原催化活性成为替代铂基催化剂最有潜力的候选者.该类材料的合成通常采用直接煅烧含有氮源、碳源和铁盐的混合前驱体的制备方法,但是热解时材料的多孔结构以及活性位点的均匀分布很难得到有效的控制.近年来,金属有机框架(MOFs)由于其多孔结构和组成可控等优点而经常被用作自牺牲模板来制备负载铁基纳米材料的多孔碳催化剂,并表现出优异的电催化活性.目前以MOF为前驱体制备高活性的载铁氮掺杂碳复合材料通常需要引入额外的氮源或铁源,因此选择氮含量丰富的铁基MOF材料作为单源前驱体制备载铁氮掺杂多孔碳复合材料具有重要的意义.除此之外,具有多级孔隙率的催化剂可以改善反应时的传质过程,同时有序交联的网络结构能够提供连续的电子传输.本文报道了一种简单可控的制备具有三维有序大孔结构的载铁氮掺杂多孔碳复合催化剂的合成方法,该材料表现出优异的电催化氧气还原性能和优异的催化稳定性.首先,以氮含量丰富的双氰胺和吡嗪配体所构筑的Fe-MOF作为前驱体,利用具有均一尺寸的聚苯乙烯微球作为造孔剂,合成得到了具有三维有序大孔结构的Fe-MOF前驱体,然后通过高温煅烧该单源前驱体制备得到具有三维有序大孔结构的氮掺杂多孔碳包覆铁-氮合金的复合型催化剂(3DOM Fe/Fe-NA@NC).扫描电镜和透射电镜结果表明,材料内形成了有序交联的大孔结构;氮气吸附测试表明,刻蚀之后材料的比表面积明显增加,结合分级多孔特性可以共同促进催化反应的传质过程.粉末X射线衍射结果证实了多孔碳材料中铁和铁-氮合金物种的成功合成.电化学测试结果表明,在0.1 M KOH电解液中,3DOM Fe/Fe-NA@NC-800催化剂表现出优于Pt/C的氧还原活性,其半波电位(E1/2)为0.88 V,大于商业Pt/C的半波电位(E1/2=0.85 V).同时,3DOM Fe/Fe-NA@NC-800表现出更加优异的稳定性,经过20000 s测试后,其电流保持率为94%,而Pt/C只保持了78%.关于活性位点探究的对比实验证明在所制备的复合材料中,铁物种作为高效的活性位点参与了电催化氧还原反应,与氮掺杂多孔碳之间的协同作用共同主导了3DOM Fe/Fe-NA@NC优异的氧还原活性.得益于其优异的氧还原活性,将其作为阴极活性材料组装为锌-空气电池进一步探究了其在实际应用中的可行性.本结果拓宽了高效的铁基催化剂的类型,同时也为制备封装非贵金属的多孔碳基催化剂提供了实验指导和理论依据.  相似文献   

8.
高性能低成本的担载型铂基催化剂是直接甲醇燃料电池(DMFC)实用化过程中的一大挑战.利用高比表面积、高稳定性、容易负载金属的载体实现 Pt颗粒的高度分散,既可提高催化剂的催化性能,又可提高 Pt的利用率以降低成本,是担载型 Pt基催化剂实用化的有效途径.碳材料是一种常用的催化剂载体,近年来我们课题组发展了一种高性能的碳纳米笼材料,并可通过异原子掺杂调变其表面性能,提高其活性和负载能力.我们采用原位氧化镁模板法制备氮掺杂碳纳米笼:以具有多级结构的碱式碳酸镁作为氧化镁模板的前体,吡啶为碳源和氮源,经高温热解沉积,在原位形成的氧化镁模板表面形成氮掺杂的石墨化碳纳米薄层;经稀盐酸浸泡并洗涤,获得高纯度的氮掺杂碳纳米笼.氮掺杂碳纳米笼具有分等级的微纳米结构、高导电性、高比表面积和可调变的孔结构,结合表面氮原子的锚钉作用,氮掺杂碳纳米笼有望成为电化学催化剂 Pt的优良载体.
  在前期研究基础上,本文探索多级结构氮掺杂碳纳米笼(hNCNC)作为新型载体负载 Pt的能力,并评价所构建的负载型催化剂 Pt/hNCNC的电催化性能.通过简便的微波辅助多元醇还原法,将氯铂酸还原成 Pt纳米粒子负载于 hNCNC的表面.为了揭示氮掺杂的效应,我们对比研究了具有相似分级结构但无掺杂的碳纳米笼(hCNC)以及商业化活性炭(Val-can XC-72)作为载体的情况.经热重(TG)和 X射线光电子能谱(XPS)分析,三种催化剂 Pt/hNCNC、Pt/hCNC和 Pt/XC-72的负载量均接近理论负载量(23.1 wt%),都主要以金属态存在.然而,扫描电子显微镜(SEM)和透射电子显微镜(TEM)结果表明, Pt/hNCNC的 Pt分散状态优于 Pt/hCNC,更远优于 Pt/XC-72. Pt/hNCNC的平均 Pt粒径最小,仅约3.3 nm.这种良好的分散状态主要得益于氮原子掺杂,高负电性的氮原子改变了局域的表面极性,有利于 Pt颗粒的成核,也有利于固定 Pt颗粒.
  由于 hNCNC对 Pt的优异分散能力, Pt/hNCNC表现出高的电化学活性面积.氢吸附和一氧化碳溶出伏安曲线表明, Pt/hNCNC的电化学活性面积高于 Pt/hCNC和 Pt/XC-72,这与显微观察和 X射线衍射(XRD)结果相吻合. Pt/hNCNC展现出优异的甲醇电催化氧化活性和高稳定性,其催化电流明显高于 Pt/hCNC和 Pt/XC-72,电流衰减亦慢于 Pt/hCNC和 Pt/XC-72. hNCNC的分级微纳米结构有利于孔内传质和电子输运,从而提高反应速度. hNCNC的氮掺杂有利于 Pt在载体表面的分散,增强了载体-金属相互作用,提高了电化学活性面积和催化活性.为了进一步考察 hNCNC对 Pt的负载能力,本文还考察了高负载量 Pt/hNCNC的性能.在负载量高达60 wt%时, Pt/hNCNC中的 Pt颗粒仍无明显聚集,其甲醇氧化电流增加了30%,可以有效提高 DMFC的输出电流密度.
  综上可见, hNCNC可以有效分散并稳定 Pt颗粒,从而提高电化学活性面积和甲醇电催化氧化活性,优于未掺杂的碳纳米笼和传统碳材料,展示了 hNCNC高分散 Pt颗粒用作 DMFC的高效阳极催化剂的重要前景,也表明 hNCNC有望成为应用广泛的新型载体.  相似文献   

9.
本文通过水热预处理,利用热解工艺从蚕茧中成功的制备了一种高性能的掺杂碳基催化剂. 研究了制备条件及氟原子掺杂对催化剂性能的影响. 在最优化条件下制备出的氮氟共掺杂碳基催化剂具有超过1000 m2•g-1的比表面积,N元素和F元素含量可达3.5 %及7.3 %. 在碱性条件下,所制备的催化剂具有可与商业铂碳催化剂相媲美的氧还原催化活性,同时展示出优异的抗甲醇中毒性能及稳定性. F原子的掺杂对催化剂性能的提高效果显著.  相似文献   

10.
高性能低成本的担载型铂基催化剂是直接甲醇燃料电池(DMFC)实用化过程中的一大挑战.利用高比表面积、高稳定性、容易负载金属的载体实现Pt颗粒的高度分散,既可提高催化剂的催化性能,又可提高Pt的利用率以降低成本,是担载型Pt基催化剂实用化的有效途径.碳材料是一种常用的催化剂载体,近年来我们课题组发展了一种高性能的碳纳米笼材料,并可通过异原子掺杂调变其表面性能,提高其活性和负载能力.我们采用原位氧化镁模板法制备氮掺杂碳纳米笼:以具有多级结构的碱式碳酸镁作为氧化镁模板的前体,吡啶为碳源和氮源,经高温热解沉积,在原位形成的氧化镁模板表面形成氮掺杂的石墨化碳纳米薄层;经稀盐酸浸泡并洗涤,获得高纯度的氮掺杂碳纳米笼.氮掺杂碳纳米笼具有分等级的微纳米结构、高导电性、高比表面积和可调变的孔结构,结合表面氮原子的锚钉作用,氮掺杂碳纳米笼有望成为电化学催化剂Pt的优良载体.在前期研究基础上,本文探索多级结构氮掺杂碳纳米笼(hNCNC)作为新型载体负载Pt的能力,并评价所构建的负载型催化剂Pt/hNCNC的电催化性能.通过简便的微波辅助多元醇还原法,将氯铂酸还原成Pt纳米粒子负载于hNCNC的表面.为了揭示氮掺杂的效应,我们对比研究了具有相似分级结构但无掺杂的碳纳米笼(hCNC)以及商业化活性炭(Valcan XC-72)作为载体的情况.经热重(TG)和X射线光电子能谱(XPS)分析,三种催化剂Pt/hNCNC、Pt/h CNC和Pt/XC-72的负载量均接近理论负载量(23.1 wt%),都主要以金属态存在.然而,扫描电子显微镜(SEM)和透射电子显微镜(TEM)结果表明,Pt/hNCNC的Pt分散状态优于Pt/h CNC,更远优于Pt/XC-72.Pt/hNCNC的平均Pt粒径最小,仅约3.3 nm.这种良好的分散状态主要得益于氮原子掺杂,高负电性的氮原子改变了局域的表面极性,有利于Pt颗粒的成核,也有利于固定Pt颗粒.由于hNCNC对Pt的优异分散能力,Pt/hNCNC表现出高的电化学活性面积.氢吸附和一氧化碳溶出伏安曲线表明,Pt/hNCNC的电化学活性面积高于Pt/h CNC和Pt/XC-72,这与显微观察和X射线衍射(XRD)结果相吻合.Pt/hNCNC展现出优异的甲醇电催化氧化活性和高稳定性,其催化电流明显高于Pt/h CNC和Pt/XC-72,电流衰减亦慢于Pt/h CNC和Pt/XC-72.hNCNC的分级微纳米结构有利于孔内传质和电子输运,从而提高反应速度.hNCNC的氮掺杂有利于Pt在载体表面的分散,增强了载体-金属相互作用,提高了电化学活性面积和催化活性.为了进一步考察hNCNC对Pt的负载能力,本文还考察了高负载量Pt/hNCNC的性能.在负载量高达60 wt%时,Pt/hNCNC中的Pt颗粒仍无明显聚集,其甲醇氧化电流增加了30%,可以有效提高DMFC的输出电流密度.综上可见,hNCNC可以有效分散并稳定Pt颗粒,从而提高电化学活性面积和甲醇电催化氧化活性,优于未掺杂的碳纳米笼和传统碳材料,展示了hNCNC高分散Pt颗粒用作DMFC的高效阳极催化剂的重要前景,也表明hNCNC有望成为应用广泛的新型载体.  相似文献   

11.
氧还原反应在一些能源转换系统如金属-空气电池中起着至关重要的作用.目前贵金属基材料(Pt/C)被认为是最有效的氧还原电催化剂,然而价格昂贵和储量有限等因素限制了它的商业化应用,因此探索高效的非贵金属氧还原电催化剂具有重要的意义.近年来,负载过渡金属铁的多孔碳催化剂由于独特的结构和优异的氧还原催化活性成为替代铂基催化剂最有潜力的候选者.该类材料的合成通常采用直接煅烧含有氮源、碳源和铁盐的混合前驱体的制备方法,但是热解时材料的多孔结构以及活性位点的均匀分布很难得到有效的控制.近年来,金属有机框架(MOFs)由于其多孔结构和组成可控等优点而经常被用作自牺牲模板来制备负载铁基纳米材料的多孔碳催化剂,并表现出优异的电催化活性.目前以MOF为前驱体制备高活性的载铁氮掺杂碳复合材料通常需要引入额外的氮源或铁源,因此选择氮含量丰富的铁基MOF材料作为单源前驱体制备载铁氮掺杂多孔碳复合材料具有重要的意义.除此之外,具有多级孔隙率的催化剂可以改善反应时的传质过程,同时有序交联的网络结构能够提供连续的电子传输.本文报道了一种简单可控的制备具有三维有序大孔结构的载铁氮掺杂多孔碳复合催化剂的合成方法,该材料表现出优异的电催化氧气还原性能和优异的催化稳定性.首先,以氮含量丰富的双氰胺和吡嗪配体所构筑的Fe-MOF作为前驱体,利用具有均一尺寸的聚苯乙烯微球作为造孔剂,合成得到了具有三维有序大孔结构的Fe-MOF前驱体,然后通过高温煅烧该单源前驱体制备得到具有三维有序大孔结构的氮掺杂多孔碳包覆铁-氮合金的复合型催化剂(3DOM Fe/Fe-NA@NC).扫描电镜和透射电镜结果表明,材料内形成了有序交联的大孔结构;氮气吸附测试表明,刻蚀之后材料的比表面积明显增加,结合分级多孔特性可以共同促进催化反应的传质过程.粉末X射线衍射结果证实了多孔碳材料中铁和铁-氮合金物种的成功合成.电化学测试结果表明,在0.1 MKOH电解液中, 3DOMFe/Fe-NA@NC-800催化剂表现出优于Pt/C的氧还原活性,其半波电位(E1/2)为0.88 V,大于商业Pt/C的半波电位(E1/2=0.85 V).同时, 3DOM Fe/Fe-NA@NC-800表现出更加优异的稳定性,经过20000 s测试后,其电流保持率为94%,而Pt/C只保持了78%.关于活性位点探究的对比实验证明在所制备的复合材料中,铁物种作为高效的活性位点参与了电催化氧还原反应,与氮掺杂多孔碳之间的协同作用共同主导了3DOM Fe/Fe-NA@NC优异的氧还原活性.得益于其优异的氧还原活性,将其作为阴极活性材料组装为锌-空气电池进一步探究了其在实际应用中的可行性.本结果拓宽了高效的铁基催化剂的类型,同时也为制备封装非贵金属的多孔碳基催化剂提供了实验指导和理论依据.  相似文献   

12.
本研究将单原子分散的Fe-N4位点锚定在氮掺杂空心多孔碳球上用于电催化氧还原反应,研究表明,所制备的FeSAs/HNCSs-800催化剂表现出优异的电催化氧还原性能,其起始电位为0.925 V,半波电位为0.867 V。球差电镜和同步辐射X射线吸收光谱证实了催化剂中存在高度分散的Fe-N4单原子位点。通过密度泛函理论计算证明单原子Fe-N4位点是氧还原反应有效的活性位点,其相邻的C缺陷可以有效调控单原子Fe的电子结构,进而提高电催化氧还原性能。  相似文献   

13.
在本工作中,通过在氮气保护下热解Pt纳米颗粒结合的ZIF-67制备了由ZIF-67原位产生的氮掺杂碳负载Pt Co合金纳米颗粒组成的Pt Co-NC复合催化剂。通过X射线衍射,扫描电子显微镜,透射电子显微镜等物理表征手段研究了催化剂的结构和形貌,并测试了该催化剂对醇类燃料甲醇和乙醇氧化的电化学性能。与参比样Pt/C相比,Pt Co-NC催化剂的电催化活性与稳定性均得到了极大的提高,其优异的催化性能可以归因于抗一氧化碳中毒能力的提升和原位形成的Pt Co纳米颗粒和氮掺杂载体间的协同作用。  相似文献   

14.
杂原子掺杂的Fe-NC催化剂在氧还原反应中表现出优异的性能.本工作采用密度泛函理论研究了S原子掺杂对Fe-NC单原子催化剂电子结构的调控及促进氧还原反应的作用机理,分析了硫原子掺杂后Fe-NC催化剂的稳定构型,S原子对FeN4活性位点电子结构的调控,以及氧气的吸附和氧还原反应作用机理.研究结果表明,在FeN4活性位点周围掺杂少量S原子,可以提高催化剂的稳定性.S原子掺杂提高氧还原性能的机理为:(1)S原子的掺杂降低了催化剂的带隙,提高催化剂导电性,有利于电催化氧还原反应;(2)S原子的掺杂可以提高催化剂吸附氧气的能力,有利于氧还原反应;(3)体系中引入四个S原子可以降低氧还原反应的过电位,提高FeN4位点催化氧还原反应的活性.这项工作可能为基于碳材料的单原子催化剂上杂原子掺杂的调控提供新的思路.  相似文献   

15.
铂基催化剂是目前氢氧燃料电池中实际应用的阴极氧还原催化剂,由于铂昂贵的价格以及稀缺性,开发非贵金属氧还原催化剂对于氢氧燃料电池的规模化应用非常必要.碳基非贵金属氧还原催化剂,包括金属-氮掺杂碳(M–N–C)材料和非金属杂原子掺杂碳材料,是目前最重要也是研究最广泛的两类非贵金属氧还原催化剂.对其活性位点的认知是研究热点之一,也是明显提高性能和宏量制备的关键所在.对于金属-氮掺杂碳催化剂,目前受到广泛认可的活性位点包括:M–N_x/C(x=1,2,3,4)、Nx–C、包覆的纳米金属粒子活化的碳层等.对于非金属杂原子掺杂碳材料(如氮掺杂碳材料),氮原子毗邻的碳原子一般被认为是活性位点.但由于原料本身、制备过程等因素,可能引入痕量的金属元素,严格意义上的非金属杂原子掺杂碳材料难以制备,使得明确其活性位点非常困难.结合本研究组在该领域的工作,本文介绍了当前上述两类催化剂在研究方面的进展,总结分析了几种对活性位点探索和确认的主流认识,以期有助于碳基非贵金属氧还原催化剂的进一步研究.  相似文献   

16.
开发用于氧还原反应(ORR)的低成本和高性能的非贵金属催化剂(NPMC)对于燃料电池的商业化至关重要。在这里,我们介绍了一种简单合成的由Fe3C纳米粒子包裹在介孔N掺杂碳(Fe-NC)中的NPMC材料,包括MIL-100(Fe)与葡萄糖和尿素的物理混合,以及随后在惰性气体下的热解。由此获得的Fe-N-C-900 (在900°C下制备的材料)表现出优异的电催化活性,高耐久性和对ORR卓越的甲醇耐受性,其催化性能与商业Pt/C在碱性介质中的催化性能相当。Fe-N-C-900在ORR中表现出优异的催化活性和稳定性,这是由于其较大的BET比表面积,较大的孔体积,氮掺杂剂,活性Fe3C纳米粒子以及其中活性官能团之间的协同效应。  相似文献   

17.
鞠剑  陈卫 《电化学》2014,20(4):353
银基氧还原电催化剂具有较高的电催化活性且价格相对低廉,因而受到广泛关注. 本文采用简单、预先合成的石墨烯量子点作为载体和还原剂,制得了负载于石墨烯量子点、且无保护剂和表面活性剂的表面洁净银纳米粒子(Ag NPs/GQDs). 电化学研究表明,Ag NPs/GQDs复合电催化剂的氧还原有较高的电催化活性,氧在碱性溶液中可经4电子途径还原为水. 与商业铂碳电极(Pt/C)相比,AgNPs/GQDs电极具有高催化电流密度、良好稳定性和极佳抗甲醇性能. 该银纳米粒子对开发高性能和低成本的非铂氧还原电催化剂有潜在的应用前景.  相似文献   

18.
氮掺杂有序介孔碳材料不仅具有高的比表面积、大的孔容和均一可调的孔径等优点,其骨架中丰富的氮原子还可以对材料的物理化学性质、配位金属电荷密度等进行调控,是一类优异的催化剂载体.本文利用软模板(嵌段共聚物F127为模板),以间氨基苯酚为碳源和氮前体,制备出较高含氮量(9.58 wt%)和比表面积(417 m2/g),以及规则孔径分布的介孔碳材料.结果表明,制备的材料具有三维立方相结构.以该碳材料作为载体,使用传统浸渍氢气还原的策略负载纳米铂颗粒.发现氮掺杂的载体能够有效控制金属纳米颗粒的尺寸,可实现超小尺寸Pt纳米颗粒的有效负载(1.0±0.5 nm),且纳米颗粒均匀分布于介孔碳材料的孔道中.相比而言,使用相同负载方法的情况下,以不掺氮的介孔碳材料为载体,纳米粒子的尺寸较难控制(4.4±1.7 nm)且会发生孔道外颗粒聚集的情况.研究表明,骨架中的氮原子与金属间弱的相互作用对纳米粒子有稳定作用.这对制备超小尺寸的金属纳米粒子催化剂具有一定的指导意义.此外,由于纳米粒子的尺寸将大大影响催化剂活性中心的暴露程度,进而影响催化剂活性.因此,我们以硝基苯类化合物的氢化反应来评价该催化剂的催化性能.在室温和1 MPa H2的温和条件下,氮掺杂的介孔碳负载催化剂表现出了优异的催化性能.反应0.5 h,对氯硝基苯可完全转化,且选择性高达99%.相比而言,商业化的Pt/C催化剂上反应的转化率和选择性分别为89%和90%.其它传统催化剂的比较,如Pt/SiO2,Pt/TiO2,同样表明,氮掺杂介孔碳负载的催化剂具有更优异的催化性能.在相同反应条件下,Pt/SiO2催化剂只能得到46%的转化率和93%的选择性,而Pt/TiO2催化剂虽然能够实现完全转化,但选择性也仅为91%.由此可见,氮掺杂的负载催化剂可大大提高反应活性和选择性,能有效抑制脱氯现象的发生.这种高的催化性能可能与催化剂的介孔结构、氮功能化载体以及超小尺寸的Pt纳米粒子的稳定有关.由于氮原子和介孔孔道的限域作用,氮掺杂介孔碳负载的催化剂也具有良好的催化稳定性,循环使用10次后,催化活性和选择性几乎没有下降.结果表明,循环使用后的催化剂金属粒子尺寸变化不大,进一步表明氮掺杂介孔碳载体对金属纳米颗粒的稳定作用.  相似文献   

19.
氮掺杂有序介孔碳材料不仅具有高的比表面积、大的孔容和均一可调的孔径等优点,其骨架中丰富的氮原子还可以对材料的物理化学性质、配位金属电荷密度等进行调控,是一类优异的催化剂载体.本文利用软模板(嵌段共聚物F127为模板),以间氨基苯酚为碳源和氮前体,制备出较高含氮量(9.58 wt%)和比表面积(417 m~2/g),以及规则孔径分布的介孔碳材料.结果表明,制备的材料具有三维立方相结构.以该碳材料作为载体,使用传统浸渍氢气还原的策略负载纳米铂颗粒.发现氮掺杂的载体能够有效控制金属纳米颗粒的尺寸,可实现超小尺寸Pt纳米颗粒的有效负载(1.0±0.5 nm),且纳米颗粒均匀分布于介孔碳材料的孔道中.相比而言,使用相同负载方法的情况下,以不掺氮的介孔碳材料为载体,纳米粒子的尺寸较难控制(4.4±1.7 nm)且会发生孔道外颗粒聚集的情况.研究表明,骨架中的氮原子与金属间弱的相互作用对纳米粒子有稳定作用.这对制备超小尺寸的金属纳米粒子催化剂具有一定的指导意义.此外,由于纳米粒子的尺寸将大大影响催化剂活性中心的暴露程度,进而影响催化剂活性.因此,我们以硝基苯类化合物的氢化反应来评价该催化剂的催化性能.在室温和1 MPaH_2的温和条件下,氮掺杂的介孔碳负载催化剂表现出了优异的催化性能.反应0.5 h,对氯硝基苯可完全转化,且选择性高达99%.相比而言,商业化的Pt/C催化剂上反应的转化率和选择性分别为89%和90%.其它传统催化剂的比较,如Pt/SiO_2,Pt/TiO_2,同样表明,氮掺杂介孔碳负载的催化剂具有更优异的催化性能.在相同反应条件下,Pt/SiO_2催化剂只能得到46%的转化率和93%的选择性,而Pt/TiO_2催化剂虽然能够实现完全转化,但选择性也仅为91%.由此可见,氮掺杂的负载催化剂可大大提高反应活性和选择性,能有效抑制脱氯现象的发生.这种高的催化性能可能与催化剂的介孔结构、氮功能化载体以及超小尺寸的Pt纳米粒子的稳定有关.由于氮原子和介孔孔道的限域作用,氮掺杂介孔碳负载的催化剂也具有良好的催化稳定性,循环使用10次后,催化活性和选择性几乎没有下降.结果表明,循环使用后的催化剂金属粒子尺寸变化不大,进一步表明氮掺杂介孔碳载体对金属纳米颗粒的稳定作用.  相似文献   

20.
采用一种简单方法制备具有优异氧还原反应(ORR)活性的、无金属的氮掺杂碳材料.以双氰胺(DCD)为氮源,蔗糖、β-环糊精和壳聚糖为不同的碳源,通过简单的热解法制备出氮掺杂的类石墨烯纳米片催化剂CN-nanosh(suc)、CN-nanosh(cyc)和CN-nanosh(ch).这些催化剂在碱性溶液中表现出优异的ORR...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号