首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It is well known that there may be significant individual differences in physiological signal patterns for emotional responses. Emotion recognition based on electroencephalogram (EEG) signals is still a challenging task in the context of developing an individual-independent recognition method. In our paper, from the perspective of spatial topology and temporal information of brain emotional patterns in an EEG, we exploit complex networks to characterize EEG signals to effectively extract EEG information for emotion recognition. First, we exploit visibility graphs to construct complex networks from EEG signals. Then, two kinds of network entropy measures (nodal degree entropy and clustering coefficient entropy) are calculated. By applying the AUC method, the effective features are input into the SVM classifier to perform emotion recognition across subjects. The experiment results showed that, for the EEG signals of 62 channels, the features of 18 channels selected by AUC were significant (p < 0.005). For the classification of positive and negative emotions, the average recognition rate was 87.26%; for the classification of positive, negative, and neutral emotions, the average recognition rate was 68.44%. Our method improves mean accuracy by an average of 2.28% compared with other existing methods. Our results fully demonstrate that a more accurate recognition of emotional EEG signals can be achieved relative to the available relevant studies, indicating that our method can provide more generalizability in practical use.  相似文献   

2.
Motor imagery-based brain–computer interfaces (MI-BCIs) have great application prospects in motor enhancement and rehabilitation. However, the capacity to control a MI-BCI varies among persons. Predicting the MI ability of a user remains challenging in BCI studies. We first calculated the relative power level (RPL), power spectral entropy (PSE) and Lempel–Ziv complexity (LZC) of the resting-state open and closed-eye EEG of different frequency bands and investigated their correlations with the upper and lower limbs MI performance (left hand, right hand, both hands and feet MI tasks) on as many as 105 subjects. Then, the most significant related features were used to construct a classifier to separate the high MI performance group from the low MI performance group. The results showed that the features of open-eye resting alpha-band EEG had the strongest significant correlations with MI performance. The PSE performed the best among all features for the screening of the MI performance, with the classification accuracy of 85.24%. These findings demonstrated that the alpha bands might offer information related to the user’s MI ability, which could be used to explore more effective and general neural markers to screen subjects and design individual MI training strategies.  相似文献   

3.
Electroencephalography neurofeedback (EEG-NFB) training can induce changes in the power of targeted EEG bands. The objective of this study is to enhance and evaluate the specific changes of EEG power spectral density that the brain-machine interface (BMI) users can reliably generate for power augmentation through EEG-NFB training. First, we constructed an EEG-NFB training system for power augmentation. Then, three subjects were assigned to three NFB training stages, based on a 6-day consecutive training session as one stage. The subjects received real-time feedback from their EEG signals by a robotic arm while conducting flexion and extension movement with their elbow and shoulder joints, respectively. EEG signals were compared with each NFB training stage. The training results showed that EEG beta (12–40 Hz) power increased after the NFB training for both the elbow and the shoulder joints’ movements. EEG beta power showed sustained improvements during the 3-stage training, which revealed that even the short-term training could improve EEG signals significantly. Moreover, the training effect of the shoulder joints was more obvious than that of the elbow joints. These results suggest that NFB training can improve EEG signals and clarify the specific EEG changes during the movement. Our results may even provide insights into how the neural effects of NFB can be better applied to the BMI power augmentation system and improve the performance of healthy individuals.  相似文献   

4.
The differential diagnosis of epileptic seizures (ES) and psychogenic non-epileptic seizures (PNES) may be difficult, due to the lack of distinctive clinical features. The interictal electroencephalographic (EEG) signal may also be normal in patients with ES. Innovative diagnostic tools that exploit non-linear EEG analysis and deep learning (DL) could provide important support to physicians for clinical diagnosis. In this work, 18 patients with new-onset ES (12 males, 6 females) and 18 patients with video-recorded PNES (2 males, 16 females) with normal interictal EEG at visual inspection were enrolled. None of them was taking psychotropic drugs. A convolutional neural network (CNN) scheme using DL classification was designed to classify the two categories of subjects (ES vs. PNES). The proposed architecture performs an EEG time-frequency transformation and a classification step with a CNN. The CNN was able to classify the EEG recordings of subjects with ES vs. subjects with PNES with 94.4% accuracy. CNN provided high performance in the assigned binary classification when compared to standard learning algorithms (multi-layer perceptron, support vector machine, linear discriminant analysis and quadratic discriminant analysis). In order to interpret how the CNN achieved this performance, information theoretical analysis was carried out. Specifically, the permutation entropy (PE) of the feature maps was evaluated and compared in the two classes. The achieved results, although preliminary, encourage the use of these innovative techniques to support neurologists in early diagnoses.  相似文献   

5.
The way people learn will play an essential role in the sustainable development of the educational system for the future. Utilizing technology in the age of information and incorporating it into how people learn can produce better learners. Implicit learning is a type of learning of the underlying rules without consciously seeking or understanding the rules; it is commonly seen in small children while learning how to speak their native language without learning grammar. This research aims to introduce a processing system that can systematically identify the relationship between implicit learning events and their Encephalogram (EEG) signal characteristics. This study converted the EEG signal from participants while performing cognitive task experiments into Multiscale Entropy (MSE) data. Using MSE data from different frequency bands and channels as features, the system explored a wide range of classifiers and observed their performance to see how they classified the features related to participants’ performance. The Artificial Bee Colony (ABC) method was used for feature selection to improve the process to make the system more efficient. The results showed that the system could correctly identify the differences between participants’ performance using MSE data and the ABC method with 95% confidence.  相似文献   

6.
Neurofeedback training (NFT) has shown promising results in recent years as a tool to address the effects of age-related cognitive decline in the elderly. Since previous studies have linked reduced complexity of electroencephalography (EEG) signal to the process of cognitive decline, we propose the use of non-linear methods to characterise changes in EEG complexity induced by NFT. In this study, we analyse the pre- and post-training EEG from 11 elderly subjects who performed an NFT based on motor imagery (MI–NFT). Spectral changes were studied using relative power (RP) from classical frequency bands (delta, theta, alpha, and beta), whilst multiscale entropy (MSE) was applied to assess EEG-induced complexity changes. Furthermore, we analysed the subject’s scores from Luria tests performed before and after MI–NFT. We found that MI–NFT induced a power shift towards rapid frequencies, as well as an increase of EEG complexity in all channels, except for C3. These improvements were most evident in frontal channels. Moreover, results from cognitive tests showed significant enhancement in intellectual and memory functions. Therefore, our findings suggest the usefulness of MI–NFT to improve cognitive functions in the elderly and encourage future studies to use MSE as a metric to characterise EEG changes induced by MI–NFT.  相似文献   

7.
In recent decades, emotion recognition has received considerable attention. As more enthusiasm has shifted to the physiological pattern, a wide range of elaborate physiological emotion data features come up and are combined with various classifying models to detect one’s emotional states. To circumvent the labor of artificially designing features, we propose to acquire affective and robust representations automatically through the Stacked Denoising Autoencoder (SDA) architecture with unsupervised pre-training, followed by supervised fine-tuning. In this paper, we compare the performances of different features and models through three binary classification tasks based on the Valence-Arousal-Dominance (VAD) affection model. Decision fusion and feature fusion of electroencephalogram (EEG) and peripheral signals are performed on hand-engineered features; data-level fusion is performed on deep-learning methods. It turns out that the fusion data perform better than the two modalities. To take advantage of deep-learning algorithms, we augment the original data and feed it directly into our training model. We use two deep architectures and another generative stacked semi-supervised architecture as references for comparison to test the method’s practical effects. The results reveal that our scheme slightly outperforms the other three deep feature extractors and surpasses the state-of-the-art of hand-engineered features.  相似文献   

8.
Emotion recognition based on electroencephalography (EEG) has attracted high interest in fields such as health care, user experience evaluation, and human–computer interaction (HCI), as it plays an important role in human daily life. Although various approaches have been proposed to detect emotion states in previous studies, there is still a need to further study the dynamic changes of EEG in different emotions to detect emotion states accurately. Entropy-based features have been proved to be effective in mining the complexity information in EEG in many areas. However, different entropy features vary in revealing the implicit information of EEG. To improve system reliability, in this paper, we propose a framework for EEG-based cross-subject emotion recognition using fused entropy features and a Bidirectional Long Short-term Memory (BiLSTM) network. Features including approximate entropy (AE), fuzzy entropy (FE), Rényi entropy (RE), differential entropy (DE), and multi-scale entropy (MSE) are first calculated to study dynamic emotional information. Then, we train a BiLSTM classifier with the inputs of entropy features to identify different emotions. Our results show that MSE of EEG is more efficient than other single-entropy features in recognizing emotions. The performance of BiLSTM is further improved with an accuracy of 70.05% using fused entropy features compared with that of single-type feature.  相似文献   

9.
With the widespread use of emotion recognition, cross-subject emotion recognition based on EEG signals has become a hot topic in affective computing. Electroencephalography (EEG) can be used to detect the brain’s electrical activity associated with different emotions. The aim of this research is to improve the accuracy by enhancing the generalization of features. A Multi-Classifier Fusion method based on mutual information with sequential forward floating selection (MI_SFFS) is proposed. The dataset used in this paper is DEAP, which is a multi-modal open dataset containing 32 EEG channels and multiple other physiological signals. First, high-dimensional features are extracted from 15 EEG channels of DEAP after using a 10 s time window for data slicing. Second, MI and SFFS are integrated as a novel feature-selection method. Then, support vector machine (SVM), k-nearest neighbor (KNN) and random forest (RF) are employed to classify positive and negative emotions to obtain the output probabilities of classifiers as weighted features for further classification. To evaluate the model performance, leave-one-out cross-validation is adopted. Finally, cross-subject classification accuracies of 0.7089, 0.7106 and 0.7361 are achieved by the SVM, KNN and RF classifiers, respectively. The results demonstrate the feasibility of the model by splicing different classifiers’ output probabilities as a portion of the weighted features.  相似文献   

10.
张涛  陈万忠  李明阳 《物理学报》2016,65(3):38703-038703
实现癫痫脑电信号的自动检测对癫痫的临床诊断和治疗具有重要意义.本文提出先使用频率切片小波变换分离出5个不同频段的节律信号,再分别计算每个节律信号的近似熵和相邻节律的波动指数,最后使用遗传算法优化的支持向量机进行分类.实验结果表明,所提出的方法能够对正常、癫痫发作间期和癫痫发作期三种脑电信号进行准确分类,分类准确率为98.33%.  相似文献   

11.
Specific emitter identification (SEI) refers to distinguishing emitters using individual features extracted from wireless signals. The current SEI methods have proven to be accurate in tackling large labeled data sets at a high signal-to-noise ratio (SNR). However, their performance declines dramatically in the presence of small samples and a significant noise environment. To address this issue, we propose a complex self-supervised learning scheme to fully exploit the unlabeled samples, comprised of a pretext task adopting the contrastive learning concept and a downstream task. In the former task, we design an optimized data augmentation method based on communication signals to serve the contrastive conception. Then, we embed a complex-valued network in the learning to improve the robustness to noise. The proposed scheme demonstrates the generality of handling the small and sufficient samples cases across a wide range from 10 to 400 being labeled in each group. The experiment also shows a promising accuracy and robustness where the recognition results increase at 10–16% from 10–15 SNR.  相似文献   

12.
Epilepsy is a neurological disorder that is characterized by transient and unexpected electrical disturbance of the brain. Seizure detection by electroencephalogram (EEG) is associated with the primary interest of the evaluation and auxiliary diagnosis of epileptic patients. The aim of this study is to establish a hybrid model with improved particle swarm optimization (PSO) and a genetic algorithm (GA) to determine the optimal combination of features for epileptic seizure detection. First, the second-order difference plot (SODP) method was applied, and ten geometric features of epileptic EEG signals were derived in each frequency band (δ, θ, α and β), forming a high-dimensional feature vector. Secondly, an optimization algorithm, AsyLnCPSO-GA, combining a modified PSO with asynchronous learning factor (AsyLnCPSO) and the genetic algorithm (GA) was proposed for feature selection. Finally, the feature combinations were fed to a naïve Bayesian classifier for epileptic seizure and seizure-free identification. The method proposed in this paper achieved 95.35% classification accuracy with a tenfold cross-validation strategy when the interfrequency bands were crossed, serving as an effective method for epilepsy detection, which could help clinicians to expeditiously diagnose epilepsy based on SODP analysis and an optimization algorithm for feature selection.  相似文献   

13.
With the development of technology and the rise of the meta-universe concept, the brain-computer interface (BCI) has become a hotspot in the research field, and the BCI based on motor imagery (MI) EEG has been widely concerned. However, in the process of MI-EEG decoding, the performance of the decoding model needs to be improved. At present, most MI-EEG decoding methods based on deep learning cannot make full use of the temporal and frequency features of EEG data, which leads to a low accuracy of MI-EEG decoding. To address this issue, this paper proposes a two-branch convolutional neural network (TBTF-CNN) that can simultaneously learn the temporal and frequency features of EEG data. The structure of EEG data is reconstructed to simplify the spatio-temporal convolution process of CNN, and continuous wavelet transform is used to express the time-frequency features of EEG data. TBTF-CNN fuses the features learned from the two branches and then inputs them into the classifier to decode the MI-EEG. The experimental results on the BCI competition IV 2b dataset show that the proposed model achieves an average classification accuracy of 81.3% and a kappa value of 0.63. Compared with other methods, TBTF-CNN achieves a better performance in MI-EEG decoding. The proposed method can make full use of the temporal and frequency features of EEG data and can improve the decoding accuracy of MI-EEG.  相似文献   

14.
针对多类运动想象情况下存在的脑电信号识别正确率比较低的问题,提出了一种将小波包方差,小波包熵和共同空间模式相结合的脑电信号特征提取,输入到支持向量机达到分类目的。首先选择小波包去噪后重要导联的脑电信号,进行小波包分解;然后对通道优化选取的重要导联的每个通道信号计算方差和熵值,对重要导联的每个通道信号的子带系数进行重构后,进行共同空间模式特征提取;最后结合2种不同导联方式所获取的特征向量进行分类。采用BCI2005desc_IIIa中l1b数据,该算法的分类正确率最高达到88.75%,相对2种单一的提取方法分别提高28.27%和6.55%。结果表明该算法能够有效提取特征向量,进而改善多类识别正确率较低的问题。  相似文献   

15.
孟庆芳  陈珊珊  陈月辉  冯志全 《物理学报》2014,63(5):50506-050506
癫痫脑电信号的自动检测对癫痫的临床诊断与治疗具有重要意义.基于递归图(recurrence plot)的递归量化分析(recurrence quantification analysis,RQA)重现了非线性时间序列的动力学行为,分析了其递归特性,本文提出了基于RQA的癫痫脑电信号特征提取方法.实验结果表明:直接基于RQA特征的癫痫脑电的检测准确率较高,其中直接基于确定率DET的分类准确率可达到90.25%.本文还把提取的RQA特征值和变化系数、波动指数相结合组成特征向量,输入到SVM分类器,实现癫痫脑电信号的自动检测;实验结果表明:该方法的分类准确率可达到99%.  相似文献   

16.
Chest compressions during cardiopulmonary resuscitation (CPR) induce artifacts in the ECG that may provoque inaccurate rhythm classification by the algorithm of the defibrillator. The objective of this study was to design an algorithm to produce reliable shock/no-shock decisions during CPR using convolutional neural networks (CNN). A total of 3319 ECG segments of 9 s extracted during chest compressions were used, whereof 586 were shockable and 2733 nonshockable. Chest compression artifacts were removed using a Recursive Least Squares (RLS) filter, and the filtered ECG was fed to a CNN classifier with three convolutional blocks and two fully connected layers for the shock/no-shock classification. A 5-fold cross validation architecture was adopted to train/test the algorithm, and the proccess was repeated 100 times to statistically characterize the performance. The proposed architecture was compared to the most accurate algorithms that include handcrafted ECG features and a random forest classifier (baseline model). The median (90% confidence interval) sensitivity, specificity, accuracy and balanced accuracy of the method were 95.8% (94.6–96.8), 96.1% (95.8–96.5), 96.1% (95.7–96.4) and 96.0% (95.5–96.5), respectively. The proposed algorithm outperformed the baseline model by 0.6-points in accuracy. This new approach shows the potential of deep learning methods to provide reliable diagnosis of the cardiac rhythm without interrupting chest compression therapy.  相似文献   

17.
This study examined the trilateral flash cycle characteristics (TFC) and partially evaporating cycle (PEC) using a low-grade heat source at 80 °C. The evaporation temperature and mass flow rate of the working fluids and the expander inlet’s quality were optimized through pinch point observation. This can help advance methods in determining the best design points and their operating conditions. The results indicated the partially evaporating cycle could solve the high-volume ratio problem without sacrificing the net power and thermal efficiency performance. When the system operation’s saturation temperature decreased by 10 °C, the net power, thermal efficiency, and volume ratio of the trilateral flash cycle system decreased by approximately 20%. Conversely, with the same operational conditions, the net power and thermal efficiency of the partially evaporating cycle system decreased by only approximately 3%; however, the volume ratio decreased by more than 50%. When the system operating temperature was under 63 °C, each fluid’s volume ratio could decrease to approximately 5. The problem of high excessive expansion would be solved from the features of the partially evaporating cycle, and it will keep the ideal power generation efficiency and improve expander manufacturing.  相似文献   

18.
This paper analyses the complexity of electroencephalogram (EEG) signals in different temporal scales for the analysis and classification of focal and non-focal EEG signals. Futures from an original multiscale permutation Lempel–Ziv complexity measure (MPLZC) were obtained. MPLZC measure combines a multiscale structure, ordinal analysis, and permutation Lempel–Ziv complexity for quantifying the dynamic changes of an electroencephalogram (EEG). We also show the dependency of MPLZC on several straight-forward signal processing concepts, which appear in biomedical EEG activity via a set of synthetic signals. The main material of the study consists of EEG signals, which were obtained from the Bern-Barcelona EEG database. The signals were divided into two groups: focal EEG signals (n = 100) and non-focal EEG signals (n = 100); statistical analysis was performed by means of non-parametric Mann–Whitney test. The mean value of MPLZC results in the non-focal group are significantly higher than those in the focal group for scales above 1 (p < 0.05). The result indicates that the non-focal EEG signals are more complex. MPLZC feature sets are used for the least squares support vector machine (LS-SVM) classifier to classify into the focal and non-focal EEG signals. Our experimental results confirmed the usefulness of the MPLZC method for distinguishing focal and non-focal EEG signals with a classification accuracy of 86%.  相似文献   

19.
20.
Alzheimer’s disease (AD) is characterized by working memory (WM) failures that can be assessed at early stages through administering clinical tests. Ecological neuroimaging, such as Electroencephalography (EEG) and functional Near Infrared Spectroscopy (fNIRS), may be employed during these tests to support AD early diagnosis within clinical settings. Multimodal EEG-fNIRS could measure brain activity along with neurovascular coupling (NC) and detect their modifications associated with AD. Data analysis procedures based on signal complexity are suitable to estimate electrical and hemodynamic brain activity or their mutual information (NC) during non-structured experimental paradigms. In this study, sample entropy of whole-head EEG and frontal/prefrontal cortex fNIRS was evaluated to assess brain activity in early AD and healthy controls (HC) during WM tasks (i.e., Rey–Osterrieth complex figure and Raven’s progressive matrices). Moreover, conditional entropy between EEG and fNIRS was evaluated as indicative of NC. The findings demonstrated the capability of complexity analysis of multimodal EEG-fNIRS to detect WM decline in AD. Furthermore, a multivariate data-driven analysis, performed on these entropy metrics and based on the General Linear Model, allowed classifying AD and HC with an AUC up to 0.88. EEG-fNIRS may represent a powerful tool for the clinical evaluation of WM decline in early AD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号