共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Bartosz Nowosielski Marzena Jamrgiewicz Justyna uczak Dorota Warmiska 《Molecules (Basel, Switzerland)》2022,27(3)
This paper demonstrates the assessment of physicochemical and thermodynamic properties of aqueous solutions of novel deep eutectic solvent (DES) built of tetrabutylammonium chloride and 3-amino-1-propanol or tetrabutylammonium bromide and 3-amino-1-propanol or 2-(methylamino)ethanol or 2-(butylamino)ethanol. Densities, speeds of sound, refractive indices, and viscosities for both pure and aqueous mixtures of DES were investigated over the entire range of compositions at atmospheric pressure and T = (293.15 ‒ 313.15) K. It was concluded that the experimental data were successfully fitted using the Jouyban–Acree model with respect to the concentration. Obtained results showed that this mathematical equation is an accurate correlation for the prediction of aqueous DES properties. Key physicochemical properties of the mixtures—such as excess molar volumes, excess isentropic compressibilities, deviations in viscosity, and deviations in refractive indices—were calculated and correlated by the Redlich–Kister equation with temperature-dependent parameters. The non-ideal behavior of the studied systems were also evaluated by using the Prigogine−Flory−Patterson theory and the results were interpreted in terms of interactions between the mixture components. 相似文献
3.
低共熔溶剂及其应用研究进展 总被引:6,自引:0,他引:6
作为一类新型的绿色溶剂,低共熔溶剂具有蒸汽压低、无毒性、可生物降解、溶解性和导电性优良、电化学稳定窗口宽等独特的物理化学性质,并且可以通过选择合适的组成和配比来调节其性能,在很多领域中有着诱人的应用前景.本文从低共熔溶剂的组成、性质及其应用等3个方面综述了近年来低共熔溶剂的研究进展,并对目前研究中存在的问题进行了讨论. 相似文献
4.
深共融溶剂在有机合成中的应用 总被引:1,自引:0,他引:1
深共融溶剂是一种新型绿色溶剂,与传统的有机溶剂相比,其具有低蒸气压、 不易燃、 稳定性好、 无毒性、 生物降解性、 可回收和廉价易得等优点。深共融溶剂作为新型溶剂,应用前景广泛。本文综述了近几年其作为新型的反应介质或催化剂用于传统的有机合成反应的最新研究成果,主要从卤代反应、Diels-Alder反应、Knoevenagel缩合、Henry反应、Perkin反应、Paal-Knorr反应和Biginelli反应等方面对其进行综述,最后展望了深共融溶剂在有机反应中的发展前景。 相似文献
5.
Innovative technologies can transform what are now considered “waste streams” into feedstocks for a range of products. Indeed, the use of biomass as a source of biopolymers and chemicals currently has a consolidated economic dimension, with well-developed and regulated markets, in which the evaluation of the manufacturing processes relies on specific criteria such as purity and yield, and respects defined regulatory parameters for the process safety. In this context, ionic liquids and deep eutectic solvents have been proposed as environmentally friendly solvents for applications related to biomass waste valorization. This mini-review draws attention to some recent advancements in the use of a series of new-solvent technologies, with an emphasis on deep eutectic solvents (DESs) as key players in the development of new processes for biomass waste valorization. This work aims to highlight the role and importance of DESs in the following three strategic areas: chitin recovery from biomass and isolation of valuable chemicals and biofuels from biomass waste streams. 相似文献
6.
The use of deep eutectic solvents (DES) is on the rise worldwide because of the astounding properties they offer, such as simplicity of synthesis and utilization, low-cost, and environmental friendliness, which can, without a doubt, replace conventional solvents used in heaps. In this review, the focus will be on the usage of DES in extracting a substantial variety of organic compounds from different sample matrices, which not only exhibit great results but surpass the analytical performance of conventional solvents. Moreover, the properties of the most commonly used DES will be summarized. 相似文献
7.
Maha M. Abdallah Martim Cardeira Ana A. Matias Maria Rosrio Bronze Naiara Fernndez 《Molecules (Basel, Switzerland)》2022,27(14)
Natural deep eutectic solvents (NaDES) were used to extract bioactive compounds from marine by-products: codfish bones, mussel meat, and tuna vitreous humor. NaDES were prepared using natural compounds, including lactic acid (Lac), fructose (Fru), and urea (Ur), and were characterized to define their physicochemical properties, including the viscosity, density, surface tension, and refractive index. FTIR and NMR analysis confirmed the presence of intermolecular hydrogen bonding in NaDES. The extracts obtained using these NaDES were characterized to define their composition. Results demonstrated that the extract’s composition differed highly, depending not only on the DES used, but also on the structure and composition of the raw material. Proteins and lipids were mainly present in extracts obtained from mussels, while ash content was highest in the extracts obtained from codfish bones. The biocompatibility of NaDES and the soluble fractions (SF) of the raw materials in NaDES was evaluated, and it was possible to conclude that the soluble ingredients obtained from the raw materials improved the biocompatibility of NaDES. 相似文献
8.
Chiara Liliana Boldrini Andrea Francesca Quivelli Norberto Manfredi Vito Capriati Alessandro Abbotto 《Molecules (Basel, Switzerland)》2022,27(3)
Deep Eutectic Solvents (DESs) have been widely used in many fields to exploit their ecofriendly characteristics, from green synthetic procedures to environmentally benign industrial methods. In contrast, their application in emerging solar technologies, where the abundant and clean solar energy is used to properly respond to most important societal needs, is still relatively scarce. This represents a strong limitation since many solar devices make use of polluting or toxic components, thus seriously hampering their eco-friendly nature. Herein, we review the literature, mainly published in the last few years, on the use of DESs in representative solar technologies, from solar plants to last generation photovoltaics, featuring not only their passive role as green solvents, but also their active behavior arising from their peculiar chemical nature. This collection highlights the increasing and valuable role played by DESs in solar technologies, in the fulfillment of green chemistry requirements and for performance enhancement, in particular in terms of long-term temporal stability. 相似文献
9.
Cecilia Ortega-Zamora Javier Gonzlez-Slamo Javier Hernndez-Borges 《Molecules (Basel, Switzerland)》2021,26(22)
Current trends in Analytical Chemistry are focused on the development of more sustainable and environmentally friendly procedures. However, and despite technological advances at the instrumental level having played a very important role in the greenness of the new methods, there is still work to be done regarding the sample preparation stage. In this sense, the implementation of new materials and solvents has been a great step towards the development of “greener” analytical methodologies. In particular, the application of deep eutectic solvents (DESs) has aroused great interest in recent years in this regard, as a consequence of their excellent physicochemical properties, general low toxicity, and high biodegradability if they are compared with classical organic solvents. Furthermore, the inclusion of DESs based on natural products (natural DESs, NADESs) has led to a notable increase in the popularity of this new generation of solvents in extraction techniques. This review article focuses on providing an overview of the applications and limitations of DESs in solvent-based extraction techniques for food analysis, paying especial attention to their hydrophobic or hydrophilic nature, which is one of the main factors affecting the extraction procedure, becoming even more important when such complex matrices are studied. 相似文献
10.
Dr. Stefan Zahn Prof. Dr. Barbara Kirchner Prof. Dr. Doreen Mollenhauer 《Chemphyschem》2016,17(21):3354-3358
Ab initio molecular dynamic simulations reveal significantly reduced ion charges in several choline‐based deep eutectic solvents, which are cheap and eco‐friendly alternatives to ionic liquids. Increasing hydrogen bond strength between the anion and the organic compound enhances charge spreading from the anion to the organic compound while the positive charge is stronger located at the cation. Nonetheless, the negative charge transferred from chloride to urea in choline chloride urea mixtures is negligible. Thus, it seems questionable if charge delocalization occurring through hydrogen bonding between the halide anion and the organic compound is responsible for the deep eutectic melting point. 相似文献
11.
One of the highlights of green chemistry is the development of techniques and procedures with low environmental impact. In the last years, deep eutectic solvents (DES) have become an important alternative to conventional organic solvents. For a period ionic liquids have provoked remarkable interest, but they have been displaced by DES because they show easier preparation methods, lower prices, many of them are biodegradable and compatible with biological systems. In addition, they show adjustable physicochemical properties, high thermal stability, low volatility and are compatible with water. In this paper is reviewed the state of the art of the use of DES paying special attention to the role of reaction media in organic synthesis. 相似文献
12.
低共熔溶剂(DES)是由两种或多种物质按一定比例混合而成的低熔点混合溶剂,其熔点显著低于每一个单纯组分的熔点,可被视为一种新的离子液体。与传统有机溶剂相比,DES具有来源广泛、成本低廉、易于制备、毒性低、生物可降解等优点,并已作为一种新型的绿色反应介质被广泛用于萃取分离、无机合成、有机合成和离子凝胶等领域。近年来,DES在高分子合成中的应用也吸引了广泛的研究兴趣。本综述从简述DES及其在有机合成中的应用出发,重点介绍它们用于缩合聚合、自由基聚合、阴离子聚合、电化学聚合、开环聚合和氧化聚合等高分子合成领域的研究进展,并对其发展趋势进行展望。 相似文献
13.
生物丁醇被认为是一种能够直接代替汽油的生物燃料,可满足经济发展对可持续液体燃料的需求。木质纤维素可再生,来源广泛且廉价,是生产生物丁醇的理想原料。但木质纤维素结构复杂,难以直接水解利用,高效的预处理方式是其商业化应用的关键。低共熔溶剂(DES)是一种环境友好的新型溶剂,具有成本低、绿色低毒、溶解能力强、良好的选择性和生物相容性等优点,有着较高的生物质预处理潜力。本文首先介绍了DES的种类和性质;其次,综述了木质纤维素中各组分在DES中的溶解效率,讨论了DES预处理木质纤维素对酶水解和丁醇发酵过程的影响;再次,通过对各种生物加工过程的梳理,对整合生物过程在生产生物丁醇领域的应用潜力进行了评述;最后,对DES预处理木质纤维素生产生物丁醇领域今后的工作做出了展望。 相似文献
14.
Indole and its derivatives captured the attention of organic chemists due to their applications in medicinal chemistry. The examples covered here are intricate polycyclic indole derivatives and these include: azapolyquinanes, cyclophanes, spirocycles and other heterocycles. We found that deep eutectic mixture such as L‐(+)‐tartaric acid (TA) and dimethyl urea (DMU) is useful to prepare complex unnatural indole derivatives. These conditions from time to time produced indole derivatives which are not possible by conventional methods. Various substrates containing multiple carbonyl groups were shown to undergo Fischer indolization (FI) in deep eutectic mixtures and thus expand its scope to a higher level. 相似文献
15.
Tong Luo Chao Wang Xingxiang Ji Guihua Yang Jiachuan Chen Srinivas Janaswamy Gaojin Lyu 《Molecules (Basel, Switzerland)》2021,26(1)
Lignin nanomaterials have wide application prospects in the fields of cosmetics delivery, energy storage, and environmental governance. In this study, we developed a simple and sustainable synthesis approach to produce uniform lignin nanoparticles (LNPs) by dissolving industrial lignin in deep eutectic solvents (DESs) followed by a self-assembling process. LNPs with high yield could be obtained through nanoprecipitation. The LNPs were characterized by dynamic light scattering (DLS), transmission electron microscopy (TEM), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and gel permeation chromatography (GPC). Distinct LNPs could be produced by changing the type of DES, lignin sources, pre-dropping lignin concentration, and the pH of the system. Their diameter is in the range of 20–200 nm and they show excellent dispersibility and superior long-term stability. The method of preparing LNPs from lignin–DES with water as an anti-solvent is simple, rapid, and environmentally friendly. The outcome aids to further the advancement of lignin-based nanotechnology. 相似文献
16.
17.
Katarzyna Dziubinska-Kühn Marion Pupier Prof. Dr. Jörg Matysik Dr. Jasmine Viger-Gravel Dr. Beatrice Karg Dr. Magdalena Kowalska 《Chemphyschem》2022,23(10):e202100806
Over the last few years, Deep Eutectic Solvents have gained popularity as a novel class of green solvents, due to their feasible synthesis and overall low production costs. The properties of glycerol (Gly)-based Deep Eutectic Solvents are frequently associated with the formation of an extended hydrogen bond network. In this study, two-dimensional Nuclear Magnetic Resonance (NMR) spectroscopy is employed to analyse the effect of glycerol oversaturation of the hydrogen bond acceptor, choline chloride (ChCl) on the structural arrangement of glyceline (molar ratio 1 : 2 ChCl:Gly), selected to represent Gly-based Deep Eutectic Solvents. The rearrangement of glycerol molecules, additionally trapping water molecules inside of isolated clusters, is revealed during a time-resolved analysis, performed in the presence of various fractions of water added to solvent. 200 % oversaturated Deep Eutectic Solvent (1 : 4 ChCl:Gly) is found to be a suitable cryoprotectant candidate, based on the revealed glycerol-water interactions. 相似文献
18.
Deep Eutectic Solvents (DES) are expected to play a pivotal role in many future chemical segments, particularly when sustainability aspects are considered. This article provides an overview of the recent granted patents related to DES, which reflects many of the practical applications that can be conceived. In the entire history of DES, more than one hundred patents have been identified, reporting strategies for areas like (bio)refineries, extraction of natural products, purification of effluents, organic synthesis, batteries, materials, etc. In many of these cases, DES are not considered to be mere innocent solvents, but their properties are tuned and adapted for the desired goals. Overall, the patent analysis reflects the potential that DES may have as emerging solutions for the Sustainable Chemistry of the future. 相似文献
19.
Kylee F. Fazende Manysa Phachansitthi Josué D. Mota‐Morales John A. Pojman 《Journal of polymer science. Part A, Polymer chemistry》2017,55(24):4046-4050
Frontal polymerization of deep eutectic solvents (DESs) made with acrylic or methacrylic acid as the monomer and hydrogen bond donor was studied. Fronts with acrylic acid and choline chloride propagated more uniformly than with pure acrylic acid, so an exploration into how the DES affected frontal polymerization was performed. The hydrogen bond acceptor of the DES was replaced by several analogs to determine the effect on the DES front behavior. The analogs used were talc, DMSO, lauric acid, and stearic acid, which acted as a heat sink, inert diluent, hydrogen bonding diluent, and inert phase change material, respectively. None of the methacrylic acid‐analog systems were able to sustain a front. While the acrylic acid‐analog systems did sustain a front (with the exception of stearic acid), none of the fronts replicated the acrylic acid DES behavior. The acrylic acid–talc sample behaved more violently—like pure acrylic acid polymerization—than the acrylic acid DES, and the DMSO and lauric acid samples produced slower fronts than that of the acrylic acid DES. We propose that the reactivity of the acrylic acid and methacrylic acid is enhanced in the DES. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 4046–4050 相似文献
20.
Andrew J. Maneffa Dr. Adrian B. Harrison Dr. Stewart J. Radford Dr. A. Steve Whitehouse Prof. James H. Clark Dr. Avtar S. Matharu 《ChemistryOpen》2020,9(5):559-567
Deep eutectic solvents (DES) are one of the most promising green technologies to emerge in recent years given their combination of environmentally friendly credentials and useful functionalities. Considering the continued search for new DES – especially those that exemplify the aforementioned characteristics, we report the preparation of DES based on natural analogues of l -ascorbic acid for the first time. The onset of eutectic melting occurred at temperatures far below the melting point of the individual components and resulted in the generation of glass forming fluids with glass transition temperatures, viscosities and flow behavior that are comparable to similar systems. This work expands the current array of DES that can be produced using naturally occurring components, which given their potential to be bio-derived, interesting physicochemical properties (e. g. propensity to supercool and vitrify) and apparent antibacterial nature, may provide utility within a range of applications. 相似文献