首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Five glutinous purple rice cultivars and non-glutinous purple rice cultivated in different altitudes in the north of Thailand were collected. The samples were extracted using ethanol and determined for anthocyanins using HPLC. The total phenolic content (TPC), total flavonoid content (TFC), and the antioxidant, anti-inflammatory, and antimicrobial activities against foodborne pathogens were investigated. The highland glutinous cultivar named Khao’ Gam Luem-Phua (KGLP) extract had significantly high levels of cyanidin 3-O-glucoside, peonidin 3-O-glucoside, delphinidin 3-O-glucoside, TPC, and TFC, as well as exerting a potent antioxidant activity through ABTS assay (524.26 ± 4.63 VCEAC, mg l-ascorbic-ascorbic/g extract), lipid peroxidation (IC50 = 19.70 ± 0.31 µg/mL), superoxide anions (IC50 = 11.20 ± 0.25 µg/mL), nitric oxide (IC50 = 17.12 ± 0.56 µg/mL), a suppression effect on nitric oxide (IC50 = 18.32 ± 0.82 µg/mL), and an inducible nitric oxide synthase production (IC50 = 23.43 ± 1.21 µg/mL) in combined lipopolysaccharide-interferon-γ-activated RAW 264.7 murine macrophage cells. Additionally, KGLP also exhibited antimicrobial activity against foodborne pathogens, Staphylococcus aureus, Escherichia coli, Salmonella Enteritidis, and Vibrio parahaemolyticus. These results indicate that Thai glutinous purple rice cultivated on the highland could be a potent natural source of antioxidants, anti-inflammatories, and antimicrobial agents for use as a natural active pharmaceutical ingredient in functional food and nutraceutical products.  相似文献   

2.
In this study, methanol extracts (MEs) and essential oil (EO) of Angelica purpurascens (Avé-Lall.) Gill obtained from different parts (root, stem, leaf, and seed) were evaluated in terms of antioxidant activity, total phenolics, compositions of phenolic compound, and essential oil with the methods of 2,2-azino-bis(3ethylbenzo-thiazoline-6-sulfonic acid (ABTS•+), 2,2-diphenyl-1-picrylhydrazil (DPPH•) radical scavenging activities, and ferric reducing/antioxidant power (FRAP), the Folin–Ciocalteu, liquid chromatography−tandem mass spectrometry (LC−MS/MS), and gas chromatography-mass spectrometry (GC−MS), respectively. The root extract of A. purpurascens exhibited the highest ABTS•+, DPPH•, and FRAP activities (IC50: 0.05 ± 0.0001 mg/mL, IC50: 0.06 ± 0.002 mg/mL, 821.04 ± 15.96 µM TEAC (Trolox equivalent antioxidant capacity), respectively). Moreover, EO of A. purpurascens root displayed DPPH• scavenging activity (IC50: 2.95 ± 0.084 mg/mL). The root extract had the highest total phenolic content (438.75 ± 16.39 GAE (gallic acid equivalent), µg/mL)). Twenty compounds were identified by LC−MS/MS. The most abundant phenolics were ferulic acid (244.39 ± 15.64 μg/g extract), benzoic acid (138.18 ± 8.84 μg/g extract), oleuropein (78.04 ± 4.99 μg/g extract), and rutin (31.21 ± 2.00 μg/g extract) in seed, stem, root, and leaf extracts, respectively. According to the GC−MS analysis, the major components were determined as α-bisabolol (22.93%), cubebol (14.39%), α-pinene (11.63%), and α-limonene (9.41%) among 29 compounds. Consequently, the MEs and EO of A. purpurascens can be used as a natural antioxidant source.  相似文献   

3.
This study investigated the chemical composition, antioxidant and antimicrobial activity of essential oil extracted from Artemisia aragonensis Lam. (EOA). Hydrodistillation was employed to extract EOA. Gas chromatography with flame ionization detection (GC-FID) and gas chromatography-mass spectrometry analyses (GC-MS) were used to determine the phytochemical composition of EOA. Antioxidant potential was examined in vitro by use of three tests: 2.2-diphenyl-1-picrilhidrazil (DPPH), ferric reducing activity power (FRAP) and total antioxidant capacity assay (TAC). Agar diffusion and microdilution bioassays were used to assess antimicrobial activity. GC/MS and GC-FID detected 34 constituents in the studied EOA. The major component was Camphor (24.97%) followed by Borneol (13.20%), 1,8 Cineol (10.88%), and Artemisia alcohol (10.20%). EOA exhibited significant antioxidant activity as measured by DPPH and FRAP assays, with IC50 and EC50 values of 0.034 ± 0.004 and 0.118 ± 0.008 mg/mL, respectively. EOA exhibited total antioxidant capacity of 7.299 ± 1.774 mg EAA/g. EOA exhibited potent antibacterial activity as judged by the low minimum inhibitory concentration (MIC) values against selected clinically-important pathogenic bacteria. MIC values of 6.568 ± 1.033, 5.971 ± 1.033, 7.164 ± 0.0 and 5.375 ± 0.0 μg/mL were observed against S. aureus, B. subtills, E. coli 97 and E. coli 57, respectively. EOA displayed significant antifungal activity against four strains of fungi: F. oxysporum, C. albicans, A. flavus and A. niger with values of 21.50 ± 0.43, 5.31 ± 0.10, 21.50 ± 0.46 and 5.30 ± 0.036 μg/mL, respectively. The results of the current study highlight the importance of EOA as an alternative source of natural antioxidant and antibacterial drugs to combat antibiotic-resistant microbes and free radicals implicated in the inflammatory responses accompanying microbial infection.  相似文献   

4.
In recent years, the increase in antibiotic resistance demands searching for new compounds with antimicrobial activity. Phytochemicals found in plants offer an alternative to this problem. The genus Pelargonium contains several species; some have commercial use in traditional medicine such as P. sinoides, and others such as P. peltatum are little studied but have promising potential for various applications such as phytopharmaceuticals. In this work, we characterized the freeze-dried extracts (FDEs) of five tissues (root, stem, leaf, and two types of flowers) and the ethyl acetate fractions from leaf (Lf-EtOAc) and flower (Fwr-EtOAc) of P. peltatum through the analysis by thin-layer chromatography (T.L.C.), gas chromatography coupled to mass spectrometry (GC-MS), phytochemicals quantification, antioxidant capacity, and antimicrobial activity. After the first round of analysis, it was observed that the FDE-Leaf and FDE-Flower showed higher antioxidant and antimicrobial activities compared to the other FDEs, for which FDE-Leaf and FDE-Flower were fractionated and analyzed in a second round. The antioxidant activity determined by ABTS showed that Lf-EtOAc and Fwr-EtOAc had the lowest IC50 values with 27.15 ± 1.04 and 28.11 ± 1.3 µg/mL, respectively. The content of total polyphenols was 264.57 ± 7.73 for Lf-EtOAc and 105.39 ± 4.04 mg G.A./g FDE for Fwr-EtOAc. Regarding the content of flavonoid, Lf-EtOAc and Fw-EtOAc had the highest concentration with 34.4 ± 1.06 and 29.45 ± 1.09 mg Q.E./g FDE. In addition, the minimum inhibitory concentration (M.I.C.) of antimicrobial activity was evaluated: Lf-EtOAc and Fwr-EtOAc were effective at 31.2 µg/mL for Staphylococcus aureus and 62.5 µg/mL for Salmonella enterica, while for the Enterococcus feacalis strain, Fwr-EtOAc presented 31.2 µg/mL of M.I.C. According to the GC-MS analysis, the main compounds were 1,2,3-Benzenetriol (Pyrogallol), with 77.38% of relative abundance in the Lf-EtOAc and 71.24% in the Fwr-EtOAc, followed by ethyl gallate (13.10%) in the Fwr-EtOAc and (Z)-9-Octadecenamide (13.63% and 6.75%) in both Lf-EtOAc and Fwr-EtOAc, respectively.  相似文献   

5.
Recently, the antimicrobial potential of essential oils extracted from plants has gained extensive research interest, primarily for the development of novel antimicrobial treatments to combat emerging microbial resistance. The current study aims at investigating the antimicrobial activity and chemical composition of essential oil derived from gold coin daisy, which is known as Asteriscus graveolens (EOAG). In this context, a gas chromatography-tandem mass spectrometry (GC-MS) analysis of EOAG was conducted to identify its phytoconstituents. The in vitro antioxidant capacity of EOAG was determined by the use of three tests, namely: 1,1-diphenyl-2-picrylhydrzyl (DPPH), ferric reducing activity power (FRAP), and total antioxidant capacity (TAC). The antimicrobial activity of EOAG against clinically important bacterial (Escherichia coli, K12; Staphylococcus aureus, ATCC 6633; Bacillus subtilis, DSM 6333; and Pseudomonas aeruginosa, CIP A22) and fungal (Candida albicans, ATCC 10231; Aspergillus niger, MTCC 282; Aspergillus flavus, MTCC 9606; and Fusarium oxysporum, MTCC 9913) strains was assessed. Antimicrobial efficacy was determined on solid (inhibition diameter) and liquid media to calculate the minimum inhibitory concentration (MIC). GC/MS profiling of EOAG revealed that 18 compounds were identified, with a dominance of α-Thujone (17.92%) followed by carvacrol (14.14%), with a total identification of about 99. 92%. The antioxidant activity of EOAG was determined to have IC50 values of 34.81 ± 1.12 µg/mL (DPPH), 89.37 ± 5.02 µg/mL (FRAP), and 1048.38 ± 10.23 µg EAA/mg (TAC). The antibacterial activity in a solid medium revealed that the largest diameter was recorded in P. aeruginosa (28.47 ± 1.44 mm) followed by S. aureus (27.41 ± 1.54 mm), and the MIC in S. aureus was 12.18 ± 0.98 µg / mL. For the antifungal activity of EOAG, the largest inhibition diameter was found in F. oxysporum (33.62 ± 2.14 mm) followed by C. albicans (26.41 ± 1.90 mm), and the smallest MIC was found in F. oxysporum (18.29 ± 1.21 µg/mL) followed by C. albicans (19.39 ± 1.0 µg/mL). In conclusion, EOAG can be useful as a natural antimicrobial and antioxidant agent and an alternative to synthetic antibiotics. Hence, they might be utilized to treat a variety of infectious disorders caused by pathogenic microorganisms, particularly those that have gained resistance to standard antibiotics.  相似文献   

6.
Englerophytum magalismontanum, a medicinal plant with ethnopharmacology use, has a dearth of information regarding its antidiabetic properties. This study evaluated the crude methanol leaf extract of E. magalismontanum and its fractions for total phenolic content, antioxidant activity, and digestive enzymes (α-amylase and α-glucosidase) inhibitory activity using standard methods. The total phenolic content (56.53 ± 1.94 mg GAE/g dry extract) and DPPH Trolox antioxidant equivalent (TAE) (1.51 ± 0.66 µg/mL) of the methanol fraction were the highest among the fractions. The IC50 values of the methanol fraction against α-amylase (10.76 ± 1.33 µg/mL) and α-glucosidase (12.25 ± 1.05 µg/mL) activities were also high. Being the most active, the methanol fraction was subjected to bio-assay guided column chromatography-based enzyme inhibition to obtain a pure compound. The phenolic compound isolated and identified as naringenin inhibited α-amylase and α-glucosidase with IC50 of 5.81 ± 2.14 µg/mL and 4.77 ± 2.99 µg/mL, respectively. This is the first study to isolate naringenin from E. magalismontanum extract. The molecular docking and molecular dynamics studies demonstrated naringenin as a promising lead compound in comparison to acarbose for the treatment of diabetes through the inhibition of α-glucosidase activity.  相似文献   

7.
The aim of the study was to determine the chemical profile, antioxidant properties and antimicrobial activities of Heterotrigona itama bee bread from Malaysia. The pH, presence of phytochemicals, antioxidant properties, total phenolic content (TPC) and total flavonoid content (TFC), as well as antimicrobial activities, were assessed. Results revealed a decrease in the pH of bee bread water extract (BBW) relative to bee bread ethanolic extract (BBE) and bee bread hot water extract (BBH). Further, alkaloids, flavonoids, phenols, tannins, saponins, terpenoids, resins, glycosides and xanthoproteins were detected in BBW, BBH and BBE. Also, significant decreases in TPC, TFC, DPPH activity and FRAP were detected in BBW relative to BBH and BBE. We detected phenolic acids such as gallic acid, caffeic acid, trans-ferulic acid, trans 3-hydroxycinnamic acid and 2-hydroxycinnamic acid, and flavonoids such as quercetin, kaempferol, apigenin and mangiferin in BBE using high-performance liquid chromatography analysis. The strongest antimicrobial activity was observed in Klebsilla pneumonia (MIC50 1.914 µg/mL), followed by E. coli (MIC50 1.923 µg/mL), Shigella (MIC50 1.813 µg/mL) and Salmonella typhi (MIC50 1.617 µg/mL). Bee bread samples possess antioxidant and antimicrobial properties. Bee bread contains phenolic acids and flavonoids, and could be beneficial in the management and treatment of metabolic diseases.  相似文献   

8.
Herbs and spices have been used since antiquity for their nutritional and health properties, as well as in traditional remedies for the prevention and treatment of many diseases. Therefore, this study aims to perform a chemical analysis of both essential oils (EOs) from the seeds of Carum carvi (C. carvi) and Coriandrum sativum (C. sativum) and evaluate their antioxidant, antimicrobial, anti-acetylcholinesterase, and antidiabetic activities alone and in combination. Results showed that the EOs mainly constitute monoterpenes with γ-terpinene (31.03%), β-pinene (18.77%), p-cymene (17.16%), and carvone (12.20%) being the major components present in C. carvi EO and linalool (76.41%), γ-terpinene (5.35%), and α-pinene (4.44%) in C. sativum EO. In comparison to standards, statistical analysis revealed that C. carvi EO showed high and significantly different (p < 0.05) antioxidant activity than C. sativum EO, but lower than the mixture. Moreover, the mixture exhibited two-times greater ferric ion reducing antioxidant power (FRAP) (IC50 = 11.33 ± 1.53 mg/mL) and equipotent chelating power (IC50 = 31.33 ± 0.47 mg/mL) than the corresponding references, and also potent activity against 2,2-diphenyl-1-picrylhydrazyl (DPPH) (IC50 = 19.00 ± 1.00 mg/mL), β-carotene (IC50 = 11.16 ± 0.84 mg/mL), and superoxide anion (IC50 = 10.33 ± 0.58 mg/mL) assays. Antimicrobial data revealed that single and mixture EOs were active against a panel of pathogenic microorganisms, and the mixture had the ability to kill more bacterial strains than each EO alone. Additionally, the anti-acetylcholinesterase and α-glucosidase inhibitory effect have been studied for the first time, highlighting the high inhibition effect of AChE by C. carvi (IC50 = 0.82 ± 0.05 mg/mL), and especially by C. sativum (IC50 = 0.68 ± 0.03 mg/mL), as well as the mixture (IC50 = 0.63 ± 0.02 mg/mL) compared to the reference drug, which are insignificantly different (p > 0.05). A high and equipotent antidiabetic activity was observed for the mixture (IC50 = 0.75 ± 0.15 mg/mL) when compared to the standard drug, acarbose, which is about nine times higher than each EO alone. Furthermore, pharmacokinetic analysis provides some useful insights into designing new drugs with favorable drug likeness and safety profiles based on a C. carvi and C. sativum EO mixture. In summary, the results of this study revealed that the combination of these EOs may be recommended for further food, therapeutic, and pharmaceutical applications, and can be utilized as medicine to inhibit several diseases.  相似文献   

9.
Phenols were extracted from the Pleioblastus amarus (Keng) shell (PAS) using ethanol. A Plackett–Burman assessment indicated that the factors affecting polyphenol extraction included the ethanol concentration, extraction temperature, liquid to solid ratio, extraction time, and reflux extraction times; the best extraction parameters were the ethanol concentration of 75%, a 20:1 liquid to solid ratio, and an extraction time of 2.1 h. The number of polyphenols was 7.216 mg/g. Furthermore, the phenol composition analysis showed the presence of p-Coumaric acid (196.88 mg /mL) and rutin (312.9 mg /mL), which were used for the in vitro extraction and determination of the antioxidant activity. According to the A, B, C, and D antioxidant activity assays, the ethyl acetate phase was the strongest with low IC50 values of 0.169 ± 0.01 mg/mL, 0.289 ± 0.01 mg/mL, 0.372 ± 0.01 mg/mL, and 1.029 ± 0.03 mg/mL, respectively, confirming high antioxidant activity. For the n-butanol and petroleum ether phases, antioxidant activity was lower. This study showed that the polyphenol extract from Pleioblastus amarus (Keng) shell displayed excellent antioxidant activity, enhancing its practical application.  相似文献   

10.
Since some synthetic insecticides cause damage to human health, compounds in plants can be viable alternatives to conventional synthetic pesticides. Dittrichia viscosa L. is a perennial Mediterranean plant known to possess biological activities, including insecticidal properties. The chemical composition of an essential oil (EOD) from D. viscosa, as well as its antioxidant, antimicrobial, and insecticidal effects on the cowpea weevil (Callosobruchus maculatus) were determined. Forty-one volatile compounds were identified in EOD, which accounted for 97.5% of its constituents. Bornyl acetate (41%) was a major compound, followed by borneol (9.3%), α-amorphene (6.6%), and caryophyllene oxide (5.7%). EOD exhibited significant antioxidant activity in all tests performed, with an IC50 of 1.30 ± 0.05 mg/mL in the DPPH test and an EC50 equal to 36.0 ± 2.5 mg/mL in the FRAP assay. In the phosphor-molybdenum test, EOD results ranged from 39.81 ± 0.7 to 192.1 ± 0.8 mg AAE/g E. EOD was active on E. coli (9.5 ± 0.5 mm), S. aureus (31.0 ± 1.5 mm), C. albicans (20.4 ± 0.5 mm), and S. cerevisiae (28.0 ± 1.0 mm), with MICs ranging from 0.1 mg/mL to 3.3 mg/mL. We found that 1 µL of EOD caused 97.5 ± 5.0% insect mortality after 96 h in the inhalation test and 60.0 ± 8.3% in the ingestion assay. The median lethal concentration (LC50) was 7.8 ± 0.3 μL EO/L, while the effective concentration in the ingestion test (LC50) was 15.0 ± 2.1 μL EO/L. We found that 20 µL of EOD caused a reduction of more than 91% of C. maculatus laid eggs.  相似文献   

11.
Syzygium cumini (Pomposia) is a well-known aromatic plant belonging to the family Myrtaceae, and has been reported for its various traditional and pharmacological potentials, such as its antioxidant, antimicrobial, anti-inflammatory, and antidiarrheal properties. The chemical composition of the leaf essential oil via gas chromatography–mass spectrometry (GC/MS) analysis revealed the identification of fifty-three compounds representing about 91.22% of the total oil. The identified oil was predominated by α-pinene (21.09%), followed by β-(E)-ocimene (11.80%), D-limonene (8.08%), β-pinene (7.33%), and α-terpineol (5.38%). The tested oil revealed a moderate cytotoxic effect against human liver cancer cells (HepG2) with an IC50 value of 38.15 ± 2.09 µg/mL. In addition, it effectively inhibited acetylcholinesterase with an IC50 value of 32.9 ± 2.1 µg/mL. Furthermore, it showed inhibitory properties against α-amylase and α-glucosidase with IC50 values of 57.80 ± 3.30 and 274.03 ± 12.37 µg/mL, respectively. The molecular docking studies revealed that (E)-β-caryophyllene, one of the major compounds, achieved the best docking scores of −6.75, −5.61, and −7.75 for acetylcholinesterase, α-amylase, and α-glucosidase, respectively. Thus, it is concluded that S. cumini oil should be considered as a food supplement for the elderly to enhance memory performance and for diabetic patients to control blood glucose.  相似文献   

12.
Walnut green husk (WGH) is a waste generated by the walnut (Juglans regia L.) harvest industry. It represents a natural source of polyphenols, compounds with antioxidant and antimicrobial activities, but their activity could be dependent on the ripeness stage of the raw material. In this study, the effect of the different ripeness stages—open (OH) and closed (CH) husks—on the antioxidant and antimicrobial properties of WGH extracts were analyzed, emphasizing the influence of the extracts in inhibiting Escherichia coli growth. The ripeness stage of WGH significantly affected the antioxidant activity of the extracts. This was attributed to the different polyphenol profiles related to the mechanical stress when the husk opened compared to the closed sample. The antimicrobial activity showed inhibition of E. coli growth. OH-extracts at 96 µg/mL caused the lowest specific growth rate (µmax = 0.003 h−1) and the greatest inhibition percentage (I = 93%) compared to CH-extract (µmax = 0.01 h−1; I = 69%). The obtained results showed the potential of the walnut green husk, principally open husk, as an economical source of antioxidant and antimicrobial agents with potential use in the food industry.  相似文献   

13.
This work aimed to evaluate the phenolic content and in vitro antioxidant, antimicrobial and enzyme inhibitory activities of the methanol extracts and their fractions of two edible halophytic Limonium species, L. effusum (LE) and L. sinuatum (LS). The total phenolic content resulted about two-fold higher in the ethyl acetate fraction of LE (522.82 ± 5.67 mg GAE/g extract) than in that of LS (274.87 ± 1.87 mg GAE/g extract). LC-MS/MS analysis indicated that tannic acid was the most abundant phenolic acid in both species (71,439.56 ± 3643.3 µg/g extract in LE and 105,453.5 ± 5328.1 µg/g extract in LS), whereas hyperoside was the most abundant flavonoid (14,006.90 ± 686.1 µg/g extract in LE and 1708.51 ± 83.6 µg/g extract in LS). The antioxidant capacity was evaluated by DPPH and TAC assays, and the stronger antioxidant activity in ethyl acetate fractions was highlighted. Both species were more active against Gram-positive bacteria than Gram negatives and showed considerable growth inhibitions against tested fungi. Interestingly, selective acetylcholinesterase (AChE) activity was observed with LE and LS. Particularly, the water fraction of LS strongly inhibited AChE (IC50 = 0.199 ± 0.009 µg/mL). The ethyl acetate fractions of LE and LS, as well as the n-hexane fraction of LE, exhibited significant antityrosinase activity (IC50 = 245.56 ± 3.6, 295.18 ± 10.57 and 148.27 ± 3.33 µg/mL, respectively). The ethyl acetate fraction and methanol extract of LS also significantly inhibited pancreatic lipase (IC50 = 83.76 ± 4.19 and 162.2 ± 7.29 µg/mL, respectively). Taken together, these findings warrant further investigations to assess the potential of LE and LS as a bioactive source that can be exploited in pharmaceutical, cosmetics and food industries.  相似文献   

14.
Objective: The present study aimed to develop and optimize esomeprazole loaded proniosomes (EZL-PNs) to improve bioavailability and therapeutic efficacy. Method: EZL-PNs formulation was developed by slurry method and optimized by 33 box-Bhekhen statistical design software. Span 60 (surfactant), cholesterol, EZL concentration were taken as independent variables and their effects were evaluated on vesicle size (nm), entrapment efficiency (%, EE) and drug release (%, DR). Furthermore, optimized EZL-PNs (EZL-PNs-opt) formulation was evaluated for ex vivo permeation, pharmacokinetic and ulcer protection activity. Result: The EZL-PNs-opt formulation showed 616 ± 13.21 nm of vesicle size, and 81.21 ± 2.35% of EE. EZL-PNs-opt exhibited negative zeta potential and spherical confirmed scanning electron microscopy. EZL-PNs-opt showed sustained release of EZL (95.07 ± 2.10% in 12 h) than pure EZL dispersion. The ex-vivo gut permeation result exhibited a significantly (p < 0.05) enhanced flux than pure EZL. The in vivo results revealed 4.02-fold enhancement in bioavailability and 61.65% protection in ulcer than pure EZL dispersion (43.82%). Conclusion: Our findings revealed that EZL-PNs formulation could be an alternative delivery system of EZL to enhance oral bioavailability and antiulcer activity.  相似文献   

15.
Natural origin molecules represent reliable and excellent sources to overcome some medicinal problems. The study of anticancer, anticoagulant, and antimicrobial activities of Thevetia peruviana latex were the aim of the current research. An investigation using high-performance liquid chromatography (HPLC) revealed that the major content of the flavonoids are rutin (11.45 µg/mL), quersestin (7.15 µg/mL), naringin (5.25 µg/mL), and hisperdin (6.07 µg/mL), while phenolic had chlorogenic (12.39 µg/mL), syringenic (7.45 µg/mL), and ferulic (5.07 µg/mL) acids in latex of T. peruviana. Via 1,1-diphenyl-2- picrylhydrazyl (DPPH) radical scavenging, the experiment demonstrated that latex had a potent antioxidant activity with the IC50 43.9 µg/mL for scavenging DPPH. Hemolysis inhibition was 58.5% at 1000 µg/mL of latex compared with 91.0% at 200 µg/mL of indomethacin as positive control. Negligible anticoagulant properties of latex were reported where the recorded time was 11.9 s of prothrombin time (PT) and 29.2 s of the activated partial thromboplastin time (APTT) at 25 µg/mL, compared with the same concentration of heparin (PT 94.6 s and APPT 117.7 s). The anticancer potential of latex was recorded against PC-3 (97.11% toxicity) and MCF-7 (96.23% toxicity) at 1000 μg/mL with IC50 48.26 μg/mL and 40.31 µg/mL, respectively. Disc diffusion assessment for antimicrobial activity recorded that the most sensitive tested microorganisms to latex were Bacillus subtilis followed by Escherichia coli, with an inhibition zone (IZ) of 31 mm with minimum inhibitory concentration (MIC) (10.2 μg/mL) and 30 mm (MIC, 12.51 μg/mL), respectively. Moreover, Candida albicans was sensitive (IZ, 28 mm) to latex, unlike black fungus (Mucor circinelloides). TEM examination exhibited ultrastructure changes in cell walls and cell membranes of Staphylococcus aureus and Pseudomonas aeruginosa treated with latex. Energy scores of the molecular docking of chlorogenic acid with E. coli DNA (7C7N), and Rutin with human prostate-specific antigen (3QUM) and breast cancer-associated protein (1JNX), result in excellent harmony with the experimental results. The outcome of research recommended that the latex is rich in constituents and considered a promising source that contributes to fighting cancer and pathogenic microorganisms.  相似文献   

16.
2,4-bis (3,5-dimethyl-1H-pyrazol-1-yl)-6-methoxy-1,3,5-triazine (BPMT) pincer ligand was used to synthesize the new [Zn(BPMT)(NCS)2] (1) and [Zn(BPMT)(Br)2] (2) complexes by a reaction with Zn(NO3)2·6H2O in the presence of either KSCN or KBr, respectively. The structure of complex 1 has been exclusively confirmed using single crystal X-ray diffraction. In this neutral heteroleptic complex, the BPMT is a pincer chelate coordinating the Zn(II) ion via three interactions with the two pyrazole moieties and the s-triazine core. Hence, BPMT is a tridentate NNN-chelate. The coordination environment of Zn(II) is completed by two strong interactions with two terminal SCN ions via the N-atom. Hence, the Zn(II) is penta-coordinated with a distorted square pyramidal coordination geometry. Hirshfeld analysis indicated the predominance of H…H, H…C and N…H intermolecular interactions. Additionally, the S…H, S…C and S…N contacts are the most significant. The free ligand has no or weak antimicrobial, antioxidant and anticancer activities while the studied Zn(II) complexes showed interesting biological activity. Complex 1 has excellent antibacterial activity against B. subtilis (2.4 μg/mL) and P. vulgaris (4.8 μg/mL) compared to Gentamycin (4.8 μg/mL). Additionally, complex 1 (78.09 ± 4.23 µg/mL) has better antioxidant activity than 2 (365.60 ± 20.89 µg/mL). In addition, complex 1 (43.86 ± 3.12 µg/mL) and 2 (30.23 ± 1.26 µg/mL) have 8 and 12 times the anticancer activity of the free BPMT ligand (372.79 ± 13.64 µg/mL).  相似文献   

17.
Medicinal plants offer imperative sources of innovative chemical substances with important potential therapeutic effects. Among them, the members of the genus Inula have been widely used in traditional medicine for the treatment of several diseases. The present study investigated the antioxidant (DPPH, ABTS and FRAP assays) and the in vitro anti-hyperglycemic potential of aerial parts of Inula viscosa (L.) Aiton (I. viscosa) extracts through the inhibition of digestive enzymes (α-amylase and α-glucosidase), responsible of the digestion of poly and oligosaccharides. The polyphenolic profile of the Inula viscosa (L.) Aiton EtOAc extract was also investigated using HPLC-DAD/ESI-MS analysis, whereas the volatile composition was elucidated by GC-MS. The chemical analysis resulted in the detection of twenty-one polyphenolic compounds, whereas the volatile profile highlighted the occurrence of forty-eight different compounds. Inula viscosa (L.) Aiton presented values as high as 87.2 ± 0.50 mg GAE/g and 78.6 ± 0.55mg CE/g, for gallic acid and catechin, respectively. The EtOAc extract exhibited the higher antioxidant activity compared to methanol and chloroform extracts in different tests with (IC50 = 0.6 ± 0.03 µg/mL; IC50 = 8.6 ± 0.08 µg/mL; 634.8 mg ± 1.45 AAE/g extract) in DPPH, ABTS and FRAP tests. Moreover, Inula viscosa (L.) Aiton leaves did show an important inhibitory effect against α-amylase and α-glucosidase. On the basis of the results achieved, such a species represents a promising traditional medicine, thanks to its remarkable content of functional bioactive compounds, thus opening new prospects for research and innovative phytopharmaceuticals developments.  相似文献   

18.
Medicinal plant extracts are increasingly considered a major source of innovative medications and healthcare products. This study focused on preparing a polyphenol enriched water extract of Egyptian celery “Apium graveolens L., Apiaceae” aerial parts (TAE) in an endeavor to accentuate its antioxidant capacity as well as its antimicrobial activity. (TAE) of celery was partitioned against different organic solvents to yield dichloromethane (DCM), ethyl acetate (EAC), and butanol (BUOH) fractions. (TAE) and the organic fractions thereof besides the remaining mother liquor (ML) were all screened for their antioxidant capacity using various protocols viz. monitoring the reducing amplitudes for ferric ions (FRAP), and radical scavenging potentials of oxygen (ORAC), 2,2’-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS), 2,2-diphenyl-1-picrylhydrazyl (DPPH), and metal chelation assays. The examination procedure revealed both (TAE) extract and (DCM) fraction, to pertain the highest antioxidant potentials, where the IC50 of the (TAE) using ABTS and metal chelation assays were ca. 34.52 ± 3.25 and 246.6 ± 5.78 µg/mL, respectively. The (DCM) fraction recorded effective results using the FRAP, ORAC, and DPPH assays ca. 233.47 ± 15.14 and 1076 ± 25.73 μM Trolox equivalents/mg sample and an IC50 474.4 ± 19.8 µg/mL, respectively. Additionally, both (TAE) and (DCM) fraction exerted antimicrobial activities recording inhibition zones (mm) (13.4 ± 1.5) and (12.0 ± 1.0) against Staphylococcus aureus and (11.0 ± 1.2) and (10.0 ± 1.3) against Escherichia coli, respectively, with no anti-fungal activity. Minimum inhibitory concentration (MIC) of (TAE) and (DCM) fraction were 1250 and 2500 µg/mL, respectively. UPLC/ESI/TOF-MS unveiled the chemical profile of both (TAE) and (DCM) fraction to encompass a myriad of active polyphenolic constituents including phenylpropanoids, coumarins, apigenin, luteolin, and chrysoeriol conjugates.  相似文献   

19.
In this study, ultrasound-assisted extraction conditions were optimized to maximize the yields of sennoside A, sennoside B, aloe-emodin, emodin, and chrysophanol from S. alexandrina (aerial parts). The three UAE factors, extraction temperature (S1), extraction time (S2), and liquid to solid ratio (S3), were optimized using response surface methodology (RSM). A Box–Behnken design was used for experimental design and phytoconstituent analysis was performed using high-performance liquid chromatography-UV. The optimal extraction conditions were found to be a 64.2 °C extraction temperature, 52.1 min extraction time, and 25.2 mL/g liquid to solid ratio. The experimental values of sennoside A, sennoside B, aloe-emodin, emodin, and chrysophanol (2.237, 12.792, 2.457, 0.261, and 1.529%, respectively) agreed with those predicted (2.152, 12.031, 2.331, 0.214, and 1.411%, respectively) by RSM models, thus demonstrating the appropriateness of the model used and the accomplishment of RSM in optimizing the extraction conditions. Excellent antioxidant properties were exhibited by S. alexandrina methanol extract obtained using the optimized extraction conditions with a DPPH assay (IC50 = 59.7 ± 1.93, µg/mL) and ABTS method (47.2 ± 1.40, µg/mL) compared to standard ascorbic acid.  相似文献   

20.
Anchusa italica Retz has been used for a long time in phytotherapy. The aim of the present study was to determine the antioxidant and antibacterial activities of extracts from the leaves and roots of Anchusa italica Retz. We first determined the content of phenolic compounds and flavonoids using Folin–Ciocalteu reagents and aluminum chloride (AlCl3). The antioxidant activity was determined using three methods: reducing power (FRAP), 2.2-diphenyl-1-picrylhydrazyl (DPPH), total antioxidant capacity (TAC). The antimicrobial activity was investigated against four strains of Escherichia coli, two strains of Klebsiella pneumoniae and coagulase-negative Staphylococcus, and one fungal strain of Candida albicans. The results showed that the root extract was rich in polyphenols (43.29 mg GAE/g extract), while the leave extract was rich in flavonoids (28.88 mg QE/g extract). The FRAP assay showed a strong iron reduction capacity for the root extract (IC50 of 0.11 µg/mL) in comparison to ascorbic acid (IC50 of 0.121 µg/mL). The DPPH test determined an IC50 of 0.11 µg/mL for the root extract and an IC50 of 0.14 µg/mL for the leaf extract. These values are low compared to those for ascorbic acid (IC50 of 0.16 µg/mL) and BHT (IC50 0.20 µg/mL). The TAC values of the leaf and root extracts were 0.51 and 0.98 mg AAE/g extract, respectively. In vitro, the extract showed inhibitory activity against all strains studied, with diameters of zones of inhibition in the range of 11.00–16.00 mm for the root extract and 11.67–14.33 mm for the leaf extract. The minimum inhibitory concentration was recorded for the leaf extract against E. coli (ATB:57), corresponding to 5 mg/mL. Overall, this research indicates that the extracts of Anchusa italica Retz roots and leaves exert significant antioxidant and antibacterial activities, probably because of the high content of flavonoids and polyphenols.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号