首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Walnut green husk (WGH) is a waste generated by the walnut (Juglans regia L.) harvest industry. It represents a natural source of polyphenols, compounds with antioxidant and antimicrobial activities, but their activity could be dependent on the ripeness stage of the raw material. In this study, the effect of the different ripeness stages—open (OH) and closed (CH) husks—on the antioxidant and antimicrobial properties of WGH extracts were analyzed, emphasizing the influence of the extracts in inhibiting Escherichia coli growth. The ripeness stage of WGH significantly affected the antioxidant activity of the extracts. This was attributed to the different polyphenol profiles related to the mechanical stress when the husk opened compared to the closed sample. The antimicrobial activity showed inhibition of E. coli growth. OH-extracts at 96 µg/mL caused the lowest specific growth rate (µmax = 0.003 h−1) and the greatest inhibition percentage (I = 93%) compared to CH-extract (µmax = 0.01 h−1; I = 69%). The obtained results showed the potential of the walnut green husk, principally open husk, as an economical source of antioxidant and antimicrobial agents with potential use in the food industry.  相似文献   

2.
The marine environment presents a favorable avenue for potential therapeutic agents as a reservoir of new bioactive natural products. Due to their numerous potential pharmacological effects, marine-derived natural products—particularly marine peptides—have gained considerable attention. These peptides have shown a broad spectrum of biological functions, such as antimicrobial, antiviral, cytotoxic, immunomodulatory, and analgesic effects. The emergence of new virus strains and viral resistance leads to continuing efforts to develop more effective antiviral drugs. Interestingly, antimicrobial peptides (AMPs) that possess antiviral properties and are alternatively regarded as antiviral peptides (AVPs) demonstrate vast potential as alternative peptide-based drug candidates available for viral infection treatments. Hence, AVPs obtained from various marine organisms have been evaluated. This brief review features recent updates of marine-derived AVPs from 2011 to 2021. Moreover, the biosynthesis of this class of compounds and their possible mechanisms of action are also discussed. Selected peptides from various marine organisms possessing antiviral activities against important human viruses—such as human immunodeficiency viruses, herpes simplex viruses, influenza viruses, hepatitis C virus, and coronaviruses—are highlighted herein.  相似文献   

3.
Bioactive peptides   总被引:2,自引:0,他引:2  
Peptides with biological activities, released during gastrointestinal digestion or food processing, play an important role in metabolic regulation and modulation, suggesting their potential use as nutraceuticals and functional food ingredients for health promotion and disease risk reduction. Many studies have reported that peptides from various food sources possess bioactivities, including antihypertensive, antioxidant, anticancer, antimicrobial, and opioid activities as well as immunomodulatory and cholesterol-lowering effects. More studies are being performed exploring the sources, bioavailabilities, and possible physiological/functional properties and the mechanisms of action of bioactive peptides. Technological approaches in terms of peptide preparation, purification, and characterization have also been investigated.  相似文献   

4.
Oxytropis pseudoglandulosa is used in Mongolian traditional medicine due to its numerous reported health-promoting effects. To date, there are very few scientific reports that describe this species. In this article, its volatile oil composition, lipid extract composition, total phenolic and flavonoid content, antibacterial and allergenic properties are elucidated for the first time. Hexadecanoic acid, fokienol and tricosane were determined as the most notable components of the volatile oil, at 13.13, 11.46 and 5.55%, respectively. Methyl benzoate was shown to be the most abundant component of lipid extract at 40.69, followed by (E)-prop-2-enoic acid, 3-phenyl- and benzenepropanoic acid, at 18.55 and 9.97%. With a TPC of 6.620 mg GAE g−1 and TFC of 10.316 mg QE g−1, the plant extract of O. pseudoglandulosa indicated good antioxidant activity measured by IC50 at 18.761 µg mL−1. Of the 12 tested microorganisms, B. subtilis and S. cerevisiae were the shown to be most susceptible to the plant extract, with MIC at 2.081 and 0.260% (v/v), respectively. Bet v 1—a major birch pollen allergen found in plant-based foods—was determined to be at 192.02 ng g−1 with ELISA. Such a wide spectrum of biological activity indicated by O. pseudoglandulosa lends credence for its application in food industry. Its exerted antioxidant and antimicrobial effects could improve preservation of low-processed food dedicated for consumers afflicted with allergies. Hexadecanoic acid supplemented in foods with dietary plant extracts could add to the potential anti-inflammatory impact. The analysis of lipid makeup suggests O. pseudoglandulosa extract could also be considered as natural pesticide in organic farming.  相似文献   

5.
The bearberry (Arctostaphylos uva-ursi L. Spreng.) is a source of herbal material—bearberry leaf (Uvae ursi folium), which is highly valued and sought by pharmaceutical and cosmetic industries. For many years, leaves of this plant have been used in traditional medicine as a diuretic, antimicrobial, and anti-inflammatory agent for various diseases of the urogenital tract. The bearberry has also been proposed as a natural antioxidant additive due to the high contents of phenolic compounds in its leaves. The study was focused on characterization of the basic phytochemical composition and antioxidant activity of extracts derived from bearberry leaves collected from plants located at the southern border of the geographical range of the species in Europe. The investigated herbal material is characterized by a different chemical profile compared to the chemical profiles of bearberry found in other parts of the continent. Bearberry extracts from plants growing in two different habitat types—heathlands and pine forests showed a wide range of variation, especially in the concentration of hyperoside, corilagin, and methylartutin and the total flavonoid contents. In addition to arbutin, bearberry can be a valuable source of phenolic compounds, which are mainly responsible for the antioxidant properties of extracts. The high content of phenols and high values of antioxidant parameters indicate a high potential of bearberry leaves to be used as a powerful natural source of antioxidants in herbal preparations. Therefore, the A. uva-ursi populations can be a source of plant material for pharmaceutical, cosmetic, and food industries.  相似文献   

6.
Food spoilage makes foods undesirable and unacceptable for human use. The preservation of food is essential for human survival, and different techniques were initially used to limit the growth of spoiling microbes, e.g., drying, heating, salting, or fermentation. Water activity, temperature, redox potential, preservatives, and competitive microorganisms are the most important approaches used in the preservation of food products. Preservative agents are generally classified into antimicrobial, antioxidant, and anti-browning agents. On the other hand, artificial preservatives (sorbate, sulfite, or nitrite) may cause serious health hazards such as hypersensitivity, asthma, neurological damage, hyperactivity, and cancer. Thus, consumers prefer natural food preservatives to synthetic ones, as they are considered safer. Polyphenols have potential uses as biopreservatives in the food industry, because their antimicrobial and antioxidant activities can increase the storage life of food products. The antioxidant capacity of polyphenols is mainly due to the inhibition of free radical formation. Moreover, the antimicrobial activity of plants and herbs is mainly attributed to the presence of phenolic compounds. Thus, incorporation of botanical extracts rich in polyphenols in perishable foods can be considered since no pure polyphenolic compounds are authorized as food preservatives. However, individual polyphenols can be screened in this regard. In conclusion, this review highlights the use of phenolic compounds or botanical extracts rich in polyphenols as preservative agents with special reference to meat and dairy products.  相似文献   

7.
In recent years, considerable importance is given to the use of agrifood wastes as they contain several groups of substances that are useful for development of functional foods. As muscle foods are prone to lipid and protein oxidation and perishable in nature, the industry is in constant search of synthetic free additives that help in retarding the oxidation process, leading to the development of healthier and shelf stable products. The by-products or residues of pomegranate fruit (seeds, pomace, and peel) are reported to contain bioactive compounds, including phenolic and polyphenolic compounds, dietary fibre, complex polysaccharides, minerals, vitamins, etc. Such compounds extracted from the by-products of pomegranate can be used as functional ingredients or food additives to harness the antioxidant, antimicrobial potential, or as substitutes for fat, and protein in various muscle food products. Besides, these natural additives are reported to improve the quality, safety, and extend the shelf life of different types of food products, including meat and fish. Although studies on application of pomegranate by-products on various foods are available, their effect on the physicochemical, oxidative changes, microbial, colour stabilizing, sensory acceptability, and shelf life of muscle foods are not comprehensively discussed previously. In this review, we vividly discuss these issues, and highlight the benefits of pomegranate by-products and their phenolic composition on human health.  相似文献   

8.
Nettle is a widely known plant whose high biological activity and beneficial medicinal effects are attributed to various bioactive compounds, among which polyphenols play an important role. In order to isolate polyphenols and preserve their properties, advanced extraction techniques have been applied to overcome the drawbacks of conventional ones. Therefore, microwave-assisted extraction (MAE) has been optimized for the isolation of nettle leaves polyphenols and it was compared to pressurized liquid extraction (PLE) and conventional heat-reflux extraction (CE). The obtained extracts were analyzed for their individual phenolic profile by UPLC MS2 and for their antioxidant capacity by ORAC assay. MAE proved to be the more specific technique for the isolation of individual phenolic compounds, while PLE produced extracts with higher amount of total phenols and higher antioxidant capacity. Both techniques were more effective compared to CE. PLE nettle extract showed antimicrobial activity against bacteria, especially against Gram-negative Pseudomonas fragi ATCC 4973 and Campylobacter jejuni NCTC 11168 strains. This suggests that PLE is suitable for obtaining a nettle extract with antioxidant and antimicrobial potential, which as such has great potential for use as a value-added ingredient in the food and pharmaceutical industry.  相似文献   

9.
Cucurbita moschata Duchesne (Cucurbitaceae) is a plant food highly appreciated for the content of nutrients and bioactive compounds, including polyphenols and carotenoids, which contribute to its antioxidant and antimicrobial capacities. The purpose of this study was to identify phenolic acids and flavonoids of Cucurbita moschata Duchesne using high-performance liquid chromatography–diode array detection–electrospray ionization tandem mass spectrometry (HPLC–DAD–ESI-MS) at different ripening stages (young, mature, ripened) and determine its antioxidant and antimicrobial activities. According to the results, phenolic acids and flavonoids were dependent on the maturity stage. The mature fruits contain the highest total phenolic and flavonoids contents (97.4 mg GAE. 100 g−1 and 28.6 mg QE. 100 g−1).A total of 33 compounds were identified. Syringic acid was the most abundant compound (37%), followed by cinnamic acid (12%) and protocatechuic acid (11%). Polyphenol extract of the mature fruits showed the highest antioxidant activity when measured by DPPH (0.065 μmol TE/g) and ABTS (0.074 μmol TE/g) assays. In the antimicrobial assay, the second stage of ripening had the highest antibacterial activity. Staphylococcus aureus was the most sensitive strain with an inhibition zone of 12 mm and a MIC of 0.75 mg L−1. The lowest inhibition zone was obtained with Salmonella typhimurium (5 mm), and the MIC value was 10 mg L−1.  相似文献   

10.
Thallium (Tl) is a rare element and one of the most harmful metals. This study validated an analytical method for determining Tl in foods by inductively coupled plasma mass spectrometry (ICP-MS) based on food matrices and calories. For six representative foods, the method’s correlation coefficient (R2) was above 0.999, and the method limit of detection (MLOD) was 0.0070–0.0498 μg kg−1, with accuracy ranging from 82.06% to 119.81% and precision within 10%. We investigated 304 various foods in the South Korean market, including agricultural, fishery, livestock, and processed foods. Tl above the MLOD level was detected in 148 samples and was less than 10 μg kg−1 in 98% of the samples. Comparing the Tl concentrations among food groups revealed that fisheries and animal products had higher Tl contents than cereals and vegetables. Tl exposure via food intake did not exceed the health guidance level.  相似文献   

11.
Food processing generates a large amount of bio-residues, which have become the focus of different studies aimed at valorizing this low-cost source of bioactive compounds. High fruit consumption is associated with beneficial health effects and, therefore, bio-waste and its constituents arouse therapeutic interest. The present work focuses on the main Portuguese fruit crops and revises (i) the chemical constituents of apple, orange, and pear pomace as potential sources of functional/bioactive compounds; (ii) the bioactive evidence and potential therapeutic use of bio-waste generated in the processing of the main Portuguese fruit crops; and (iii) potential applications in the food, nutraceutical, pharmaceutical, and cosmetics industries. The current evidence of the effect of these bio-residues as antioxidant, anti-inflammatory, and antimicrobial agents is also summarized. Conclusions of the revised data are that these bio-wastes hold great potential to be employed in specific nutritional and pharmaceutical applications.  相似文献   

12.
The fungal genus Trichoderma has various applications in industry and in medicine, and several species have economic importance as sources of enzymes, antibiotics, plant growth promoters, decomposers of xenobiotics, and as commercial biofungicides. Peptaibiotics and peptaibols are a class of linear peptides synthesized by such fungi, and more than 300 have been described to date. Of this class, those compounds exhibiting antimicrobial activity are referred to as antibiotic peptides. In this review, the biosynthesis, fermentation, structure elucidation (by MS and NMR techniques in particular) and biological activity of antibiotic peptides from Trichoderma species are described.  相似文献   

13.
The emergence of excessive free radicals leads to the destruction of various systems within the body. These free radicals also affect nutritional values, color, taste, and emit an odor akin to rancid food. Most food industries use synthetic antioxidants, such as BHT (butylated hydroxytoluene) or BHA (butylated hydroxy anisole). However, high doses of these can be harmful to our health. Therefore, an antioxidant compounds, such as bioactive peptides from edible animals or plants, have emerged to be a very promising alternative as they reduce potential side effects. This study focused on the purification and identification of antioxidant peptides from protein hydrolysates of wild silkworm pupae (Samia ricini). Antioxidant peptides were purified from the hydrolysate by ultrafiltration and RP-HPLC. The results showed that protein hydrolysate from S. ricini pupae by trypsin with a molecular weight lower than 3 kDa and highly hydrophobic property, exhibited strong DPPH radical scavenging activity and chelating activity. Further identification of peptides from the fraction with the highest antioxidant activity was carried out using LC-MS/MS. Three novel peptides, i.e., Met-Ley-Ile-Ile-Ile-Met-Arg, Leu-Asn-Lys-Asp-Leu-Met-Arg, and Glu-Asn-Ile-Ile-Leu-Phe-Arg, were identified. The results of this study indicated that the protein hydrolysate from S. ricini pupae possessed potent biological activity, and the novel antioxidant peptides could be utilized to develop health-related antioxidants in food industry.  相似文献   

14.
Essential oils (EOs) have been used for centuries, and interest in these compounds has been revived in recent years. Due to their unique chemical composition as well as antimicrobial, immunostimulatory, anti-inflammatory and antioxidant properties, EOs are used in pharmacology, cosmetology and, increasingly, in animal breeding and rearing, and processing of animal raw materials. Essential oils have become a natural alternative to preservatives, taste enhancers and, most importantly, antibiotics, because the European Union banned the use of antibiotics in metaphylaxis in animal husbandry in 2006. In the animal production chain, EOs are used mainly as feed additives to improve feed palatability and increase feed intake, improve animal resistance and health status, and to prevent and treat diseases. Recent research indicates that EOs can also be applied to sanitize poultry houses, and they can be used as biopesticides in organic farming. Essential oils effectively preserve meat and milk and, consequently, improve the safety, hygiene and quality of animal-based foods. Novel technologies such as encapsulation may increase the bioavailability of EOs and their application in the production of food and feed additives.  相似文献   

15.
Rosa gallica var. aegyptiaca is a species of flowering plant belonging to the Rosaceae family that plays an important role as a therapeutic agent for the treatment of specific types of cancer, microbial infections, and diabetes mellitus. This work presents the first report on the evaluation of the antioxidant and antimicrobial potential along with the phytochemical analysis of Rosa gallica var. aegyptiaca leaves. Five leaf extracts of hexane, chloroform, methanol, hydromethanol 80%, and water were prepared. Assessment of antioxidant activity was carried out via DPPH radical scavenging assay. Antimicrobial activity against five foodborne pathogenic bacteria—including Listeria monocytogenes, Bacillus subtilis, Staphylococcus aureus, Escherichia coli, and Salmonella enteritidis—and the fungus Candida albicans, was examined using the disc diffusion method. Total phenolic content and total flavonoid content were determined using the Folin–Ciocalteu reagent and aluminum chloride methods, respectively. Isolation, identification, and quantification of phenolic compounds were performed using HPLC-DAD analysis. Amongst the five leaf extracts that were investigated, hydromethanol 80% extract possessed the highest extraction yield, antioxidant activity, total phenolic content, and antimicrobial activity against all tested microbial strains. Moreover, this extract furnished six active phenolic compounds: gallic acid (1), (+) catechin (2), chlorogenic acid (3), (–) epicatechin (4), quercetin-3-O-α-d-(glucopyranoside) (5), and quercetin (6). This study provides an alternative utilization of R. gallica var. aegyptiaca leaves as a readily accessible source of natural antioxidants and antimicrobials in the food and pharmaceutical industries.  相似文献   

16.
Lima MJ  Tóth IV  Rangel AO 《Talanta》2005,68(2):207-213
A sequential injection system based on the ABTS (2,2′-azino-bis-(3-ethylbenzothiazoline-6-sulphonic-acid) methodology was developed. The proposed method, incorporating a mixing chamber in the side port of the selection valve, was evaluated to measure the total antioxidant activity of several beverages and foods.The ABTS+ is generated by oxidation of ABTS with potassium persulfate and is reduced in presence of hydrogen-donating antioxidants converting into a colourless product. The applicability of the developed method was tested by measurement of the antioxidant activity of pure compounds as well as by analysing complex food and beverage samples. The antioxidant activity was presented as l(+) ascorbic acid equivalence. The values obtained by this methodology were not significantly different from the results obtained by the original spectrophotometric ABTS assay. For most of the studied antioxidants, antioxidant activity varied with pH and dilution. The proposed SIA system is suitable for screening direct or diluted total antioxidant activity of pure compounds or food samples.  相似文献   

17.
Spices are a popular food of plant origin, rich in various phytochemicals and recognized for their numerous properties. The aim of the study was to evaluate the antioxidant and antimicrobial activity, as well as the content of specialized metabolites, of aqueous extracts of three spice species––garlic (Allium sativum L.), ginger (Zingiber officinalle L.) and turmeric (Curcuma longa L.)––prepared by green extraction methods. Ultrasound treatment increased the chromaticity parameter b value of turmeric and ginger extracts, thus indicating a higher yellow color predominantly due to curcuminoids characteristic of these species. Ultrasound-assisted extraction significantly increased the content of total soluble solids, phenolic compounds, total carotenoids and vitamin C. The temperature of the system was also an important factor, with the highest (70 °C) conditions in ultrasound-assisted extraction having a positive effect on thermolabile compounds (vitamin C, phenolics, total carotenoids). For example, turmeric extract treated with ultrasound at 70 °C had up to a 67% higher vitamin C content and a 69.4% higher total carotenoid content compared to samples treated conventionally at the same temperature, while ginger extracts had up to 40% higher total phenols. All different concentrations of spice extracts were not sufficient for complete inhibition of pathogenic bacterial strains of Salmonella, L. monocytogenes and S. aureus; however, only garlic extracts had an effect on slowing down the growth and number of L. monocytogenes colonies. Spice extracts obtained by ultrasonic treatment contained a significantly higher level of bioactive compounds and antioxidant capacity, suggesting that the extracts obtained have significant nutritional potential and thus a significant possibility for phytotherapeutic uses.  相似文献   

18.
Capillary electrophoresis-mass spectrometry in food analysis   总被引:1,自引:0,他引:1  
Simó C  Barbas C  Cifuentes A 《Electrophoresis》2005,26(7-8):1306-1318
This work provides an updated overview (including works published till June 2004) on the principal applications of capillary electrophoresis-mass spectrometry (CE-MS) together with their main advantages and drawbacks in food science. Thus, analysis of amino acids, peptides, proteins, carbohydrates, or polyphenols by CE-MS in different foods is reviewed. Also, other natural compounds (e.g., alkaloids) and toxins analyzed by CE-MS in foods are revised. Moreover, exogenous substances with a potential risk for human health (e.g., pesticides, drugs) detected in foods by CE-MS are included in this work. The usefulness of CE-MS for food analysis and the information that this coupling can provide in terms of processing, composition, authenticity, quality, or safety of foods is also discussed.  相似文献   

19.
The synthesis of inhibitors for oxidative stress-associated destructive processes based on 2H-imidazole-derived phenolic compounds affording the bifunctional 2H-imidazole-derived phenolic compounds in good-to-excellent yields was reported. In particular, a series of bifunctional organic molecules of the 5-aryl-2H-imidazole family of various architectures bearing both electron-donating and electron-withdrawing substituents in the aryl fragment along with the different arrangements of the hydroxy groups in the polyphenol moiety, namely derivatives of phloroglucinol, pyrogallol, hydroxyquinol, including previously unknown water-soluble molecules, were studied. The structural and antioxidant properties of these bifunctional 5-aryl-2H-imidazoles were comprehensively studied. The redox transformations of the synthesized compounds were carried out. The integrated approach based on single and mixed mechanisms of antioxidant action, namely the AOC, ARC, Folin, and DPPH assays, were applied to estimate antioxidant activities. The relationship “structure-antioxidant properties” was established for each of the antioxidant action mechanisms. The conjugation effect was shown to result in a decrease in the mobility of the hydrogen atom, thus complicating the process of electron transfer in nearly all cases. On the contrary, the conjugation in imidazolyl substituted phloroglucinols was found to enhance their activity through the hydrogen transfer mechanism. Imidazole-derived polyphenolic compounds bearing the most electron-withdrawing functionality, namely the nitro group, were established to possess the higher values for both antioxidant and antiradical capacities. It was demonstrated that in the case of phloroglucinol derivatives, the conjugation effect resulted in a significant increase in the antiradical capacity (ARC) for a whole family of the considered 2H-imidazole-derived phenolic compounds in comparison with the corresponding unsubstituted phenols. Particularly, conjugation of the polyphenolic subunit with 2,2-dimethyl-5-(4-nitrophenyl)-2H-imidazol-4-yl fragment was shown to increase ARC from 2.26 to 5.16 (104 mol-eq/L). This means that the considered family of compounds is capable of exhibiting an antioxidant activity via transferring a hydrogen atom, exceeding the activity of known natural polyphenolic compounds.  相似文献   

20.
Actinomycetes are regarded as important sources for the generation of various bioactive secondary metabolites with rich chemical and bioactive diversities. Amycolatopsis falls under the rare actinomycete genus with the potential to produce antibiotics. In this review, all literatures were searched in the Web of Science, Google Scholar and PubMed up to March 2021. The keywords used in the search strategy were “Amycolatopsis”, “secondary metabolite”, “new or novel compound”, “bioactivity”, “biosynthetic pathway” and “derivatives”. The objective in this review is to summarize the chemical structures and biological activities of secondary metabolites from the genus Amycolatopsis. A total of 159 compounds derived from 8 known and 18 unidentified species are summarized in this paper. These secondary metabolites are mainly categorized into polyphenols, linear polyketides, macrolides, macrolactams, thiazolyl peptides, cyclic peptides, glycopeptides, amide and amino derivatives, glycoside derivatives, enediyne derivatives and sesquiterpenes. Meanwhile, they mainly showed unique antimicrobial, anti-cancer, antioxidant, anti-hyperglycemic, and enzyme inhibition activities. In addition, the biosynthetic pathways of several potent bioactive compounds and derivatives are included and the prospect of the chemical substances obtained from Amycolatopsis is also discussed to provide ideas for their implementation in the field of therapeutics and drug discovery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号