首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Carbon nanotubes (CNTs) are composed of cylindrical graphite sheets consisting of sp(2) carbons. Due to their structure CNTs are considered to be aromatic systems. In this work the number of Kekulé structures (K) in "armchair" CNTs was estimated by using the transfer matrix technique. All Kekulé structures of the cyclic variants of naphthalene and benzo[c]phenanthrene have been generated and the basic patterns have been obtained. From this information the elements of the transfer matrix were derived. The results obtained indicate that K (and the resonance energy) is greater if tubulenes are extended in the vertical than in the horizontal direction. Tubulenes are therefore more stabile than cyclic strips. An illustration, obtained by using scanning probe microscope, has been attached to affirm the existence of thin CNTs.  相似文献   

2.
Butyrylcholinesterase (BChE) is not only an important protein for development of anti-cocaine medication but also an established drug target to develop new treatment for Alzheimer’s disease (AD). The molecular basis of interaction of a new series of quinazolinimine derivatives as BChE inhibitors has been studied by molecular docking and molecular dynamics (MD) simulations. The molecular docking and MD simulations revealed that all of these inhibitors bind with BChE in similar binding mode. Based on the similar binding mode, we have carried out three-dimensional quantitative structure–activity relationship (3D-QSAR) studies on these inhibitors using comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA), to understand the structure–activity correlation of this series of inhibitors and to develop predictive models that could be used in the design of new inhibitors of BChE. The study has resulted in satisfactory 3D-QSAR models. We have also developed ligand-based 3D-QSAR models. The contour maps obtained from the 3D-QSAR models in combination with the simulated binding structures help to better interpret the structure–activity relationship and is consistent with available experimental activity data. The satisfactory 3D-QSAR models strongly suggest that the determined BChE-inhibitor binding modes are reasonable. The identified binding modes and developed 3D-QSAR models for these BChE inhibitors are expected to be valuable for rational design of new BChE inhibitors that may be valuable in the treatment of Alzheimer’s disease.  相似文献   

3.
The infrared spectrum of ether was studied using Fourier transform infrared spectroscopy in conjunction with the density functional theory (DFT). The optimized structures and vibrational frequencies of the ether·(H2O) n (n = 1–3) complexes were obtained at B3LYP/6-31G(d) theory levels. Compared to those of free-form ether, the C–O stretching vibrational frequencies of the ether–water complexes are found to shift to red by up to 39 cm?1 with an increase in the C–O length of 0.016 Å. Meanwhile, the frequency of the O–H stretching modes of water in the complexes appears significantly redshifted to a varying degree. The DFT calculations suggest that these shifts are caused by the hydrogen bonding between ether and water.  相似文献   

4.
《Fluid Phase Equilibria》1999,157(1):17-28
An attempt has been made to propose accurate equations for correlating the surface tension of binary liquid mixtures. The method is applicable to the systems comprising of components with widely different molecular sizes. Two adjustable parameters, δp and δm obtained from the least squares analyses of the surface tension–composition data are reported for a number of systems. Temperature dependence of δp and δm is demonstrated for a few systems. The framework of operational equations has later been applied to cover multi-component systems comprising of fused salts with a single liquid component in full mole fraction range. Excellent fits of the surface tension for binary, ternary and multi-component ionic systems in aqueous or non-aqueous media have been obtained from the proposed method. The surface tension–composition data of 59 different types of systems with about 400 data points can be correlated by the equation with an average percent deviation of about 0.61. In contrast to previous equations from literature to calculate surface tension data, the proposed correlation is noted to be more accurate in different situations.  相似文献   

5.
Here we investigate and compare the more salient characteristics of host–guest complexes of (+)-(2R,3R)-1,1-4,4-tetraphenylbutane-1,2,3,4-tetraol (TETROL) with four heterocyclic guests, morpholine, piperidine, pyridine and dioxane. These guests each formed inclusion compounds with TETROL, and host:guest ratios were either 1:2 or 1:1. Single crystal diffraction experiments revealed unprecedented host behaviour in the presence of both piperidine and dioxane with respect to the mode of host–guest hydrogen bonding employed. Furthermore, by utilizing 1H-NMR spectroscopy or gas chromatography (as applicable) as methods for analysing complexes obtained from competition experiments, we were able to identify the host selectivity order, and were gratified to discover that this order correlated precisely with host–guest hydrogen bond distance.  相似文献   

6.
Rzepa HS 《Inorganic chemistry》2008,47(19):8932-8934
An analysis of the pi-electronic topology of a recently reported pentadecanuclear manganese metallacycle in terms of linking number, twist, and writhe confirms its previous assignment as a M?bius system of order six. The total degree of local torsion is reduced by a significant contribution from writhe, thus correcting the previously inferred local torsion at each metal center from 120 degrees to approximately 90 degrees . This latter value suggests a model for the cyclic pi conjugation around the metallacycle, which involves 3d pi-2p pi interactions at the metal center, of a type first suggested by Craig 50 years ago in the context of main group cyclic aromatic systems.  相似文献   

7.
The inclusion complexes of β-cyclodextrin (β-CD) with pyrazinamide (PYA) and piperazine (PIZ) have been investigated both in the solid phase by single-crystal X-ray diffraction analysis and in the gas phase by semi-empirical PM3 calculation. In the crystalline phase, the disordered PYA and PIZ molecules are entirely embedded in the β-CD cavity. The PYA pyrazine-centre displaces upwards by 1.15(1) Å from the β-CD plane, whereas the PIZ centre shifts downwards by 0.76(1) Å from the β-CD plane. The inclusion scenario changed in the gas phase. Two inclusion geometries of the PYA molecule are comparatively stable with binding energies of ? 22.28 and ? 25.29 kJ mol? 1: the pyrazine centre shifts upwards by 0.5 Å and downwards by 2.0 Å from the β-CD plane. The PIZ molecule positioning at 2.0 Å below the β-CD plane gives a more stable inclusion complex than does the PYA molecule by 22–25 kJ mol? 1.

Structural distinction of the β-CD–PYA and β-CD–PIZ inclusion complexes in the solid phase (by X-ray crystallography) and gas phase (by PM3 calculation) is a paradigm of the CD conformational flexibility, the induced-fit mechanism and the dynamics of the inclusion process.  相似文献   

8.
This paper presents a thermodynamic study of the rate and equilibria processes involved in the α-cyclodextrin mediated reaction of a range of 4-substituted phenyl methyl sulfides with two peroxyacids of different binding affinities. The results for the inclusion processes show that the formation of 1:1 and 2:1 (host:guest) complexes between α-cyclodextrin and phenyl methyl sulfides are generally enthalpically controlled, particularly so for the 2:1 complexes, as might be expected for a ternary complex. The data from this series of sulfides is presented as enthalpy-entropy compensation plots, yielding slopes of unity for each inclusion process. The formation of a 1:1 complex between cyclodextrin and the strongly associating 3-chloroperbenzoic acid (MCPBA) is also enthapically controlled. The other peroxyacid used, peroxomonosulfate, does not bind to α-cyclodextrin to any measurable degree. As described in our original study of this reaction system (Davies and Deary in J Chem Soc Perkin Trans 2:2423–2430, 1996), catalysis by α-cyclodextrin is effected by activation of the peroxide as a result its inclusion within the cyclodextrin cavity; hence for reactions of phenyl methyl sulfides with MCPBA, catalysis is observed, but is absent for PMS. In this study the reaction rates are analysed using the transition state pseudo-equilibrium approach of Tee (Carbohydr Res 192:181–195, 1989), whereby the transition state pseudoequilibrium constant K TS reflects the stabilisation imparted to the transition state by the association with one molecule of cyclodextrin. Enthalpy- entropy compensation plots for K TS give slopes close to unity; this is the first reported example of such plots being applied to transition state pseudoequilibrium constants.  相似文献   

9.
The base form of the local anaesthetic kazcaine (BFK, [1-(2-ethoxyethyl)-4-ethynyl-4-benzoyloxypiperidine, C18H23NO3]) and β-cyclodextrin (β-CD) co-crystallized as BFK:β-CD inclusion complex in 1:2 M ratio from a mixture of water and ethanol while the filtered mother liquor yielded crystals of free BFK. X-ray diffraction showed that the crystals of BFK and its inclusion complex with β-CD belong to monoclinic (P21/c) and triclinic (P1) space groups, respectively. The crystals of free BFK are stabilized by pairs of C–H?O, C–H?π and ≡C–H?O type interactions and van der Waals contacts. In the 1:2 BFK:β-CD complex the two β-CD molecules are in hydrogen-bonding contact with their primary hydroxyl groups, the 1-(2-ethoxyethyl)-4-ethynyl-piperidine moiety being located in one and the benzoyloxy group of BFK in the other β-CD. This crystal structure is of the channel-type, the β-CD molecules of the 1:2 BFK:β-CD complex interacting with their secondary hydroxyl groups. The pharmacological activities of the 1:2 BFK/β-CD inclusion complex have been determined in mice, rats, porpoises and rabbits and compare favourably with those of kazcaine, procaine, dicaine, lidocaine and trimecaine. The methods used include terminal (superficial), infiltration, conduction anaesthesia, and acute toxicity.  相似文献   

10.
Five fluorene-based conjugated copolymers were studied to explore the effect of acceptor on the electronic and optical properties. Their ground-state, excited-state electronic structures and the tunable optical properties were theoretically investigated using density functional theory (DFT) and time-dependent density functional theory (TDDFT) methods. The acceptors including quinoxaline (Q), 2,1,3-benzothiadiazole (BT), thieno[3,4-b]pyrazine (TP), 2,1,3-benzooxadiazole (BO), and pyridopyrazine (PP) can significantly influence the copolymers’ electronic structures, molecular orbitals, geometric conformations, and optical properties. Calculations were made on systems containing one, two, three, and four oligomers in the neutral, cationic, and anionic structures, which can be extrapolated to infinite chain length polymers. The result indicated that the sequence of the band gap was on the reverse trend of emission wavelength. The strong electron-withdrawing strength of TP unit and coplanar backbone in poly[2,7-(9,9′-dihexylfluorene)-alt-2,3-dimethyl-5,7-dithien-2-yl-thieno[3,4-b] pyrazine] resulted in the enhanced degree of intramolecular charge transfer (ICT) and lowest band gap. The contribution of acceptors to IP was also found to follow the sequence of TP < Q < PP < BT < BO. The absorption and emission spectra exhibited red-shift with increasing the conjugation lengths. The present study suggested that the electronic and optical properties of donor–acceptor conjugated copolymers were affected by the acceptor structure.  相似文献   

11.
Based on the available structural models and theories of electrical resistivity (ER) of liquid alloys, the structure and the liquid–solid correlation of Al (100-x) Mgx (x = 0, 10, 20, 30, 40, 50) alloys have been qualitatively studied by measuring the ER during the heating/cooling process using the direct-current (DC) four-probe method, as well as by characterizing the solidification morphology and testing the hardness. The result shows that the ER of Al–Mg alloys increases with the increasing temperature and the Mg content; thermal state and history have an effect on the solidification structure and properties: the ER of Al–Mg alloys exhibits a lag phenomenon of structure change during the heating/cooling process. A higher heating/cooling rate contributes to the more obvious relaxation effect of ER and the more uniform structure. Furthermore, higher pouring temperature (PT) leads the melts and solidification structure to be more homogeneous, which increases the hardness.  相似文献   

12.
Tests and/or test items can sometimes be expensive, unique, or only performed in a few laboratories. There can be cases where assigned values are unknown, there is no information, or only poor information on the probability density function attributed to the test result. Sometimes there are neither reference materials nor the ability to establish consensus values due to a lack of experts. It can be impossible to repeat a test on the same item because it is destroyed during the test itself, or the homogeneity of tested items is unknown and no criteria can be established. Specified technical requirements concerning proficiency testing and interlaboratory comparison schemes are generally not applicable in this situation. However, interlaboratory comparison could allow laboratories to have more confidence in their results. The present paper discusses three statistical methods of assessing interlaboratory comparison results obtained in such conditions. Two methods are based on an assigned value determined from participant results through robust analysis. The third is based on the compatibility of results assessed using the ζ parameter. This paper focuses on an interlaboratory comparison for two laboratories, each testing three samples. The use of statistical methods turns out to be high risk, particularly in terms of falsely accepting results. Additionally, is shown that methods dedicated to small samples are also not efficient in detecting discrepancies of test results.  相似文献   

13.
The core–nanoshell composite materials with magnetic fly-ash hollow cenosphere as core and nano SmFeO3 as shell were synthesized by high-energy ball milling method. The magnetic fly-ash hollow cenosphere, samarium nitrate, and iron nitrate were used as raw materials. The synthesis and growth kinetics of the composite materials were investigated using the thermogravimetry and differential thermal analysis (TG–DTA) at different heating rates. The results show that the precursor of the composite materials decomposes in three steps. The apparent activation energy of each stage was calculated using the Doyle–Ozawa and Kissinger methods. The reaction order, frequency factor, and rate equations were also determined. The activation energy of the nano crystallite growth is calculated to be 16.12 kJ mol?1 according to kinetics theory of nano crystallite growth. It can be inferred that the crystallite grows primarily by means of an interfacial reaction during the thermal treatment. The magnetic properties and microwave absorbing properties of samples were analyzed by the vibrating sample magnetometer analysis and vector network analyzer. The results indicated that the exchange coupling interaction happens between ferrite of magnetic fly-ash hollow cenosphere and nanosized ferrite coating, which cause outstanding magnetic properties. In the frequency between 1 MHz and 1 GHz, the absorbing effectiveness of the composite absorbers can achieve ?32 dB. The magnetic properties of the composite material are better than those of single phase. So it is consistent with requirements of the microwave absorbing material at the low-frequency absorption.  相似文献   

14.
Although a number of methods have been developed for the selective oxidation of sulfides to sulfoxides, the need remains for alternative efficient, reliable strategies that can be generally applied to various sulfides and that use readily available reagents under mild reaction conditions. Herein, we report the use of urea–hydrogen peroxide adduct (UHP) and cyanuric chloride in CH3CN at room temperature to convert sulfides to sulfoxides in excellent yields. In particular, this protocol produced sulfoxides with aromatic rings bearing electron-withdrawing groups in excellent yields.  相似文献   

15.
The K-Au-Ga system has been investigated at 350 °C for <50 at. % K. The potassium gold gallides K(0.55)Au(2)Ga(2), KAu(3)Ga(2), KAu(2)Ga(4) and the solid solution KAu(x)Ga(3-x) (x = 0-0.33) were synthesized directly from the elements via typical high-temperature reactions, and their crystal structures were determined by single crystal X-ray diffraction: K(0.55)Au(2)Ga(2) (I, I4/mcm, a = 8.860(3) ?, c = 4.834(2) ?, Z = 4), KAu(3)Ga(2) (II, Cmcm, a = 11.078(2) ?, b = 8.486(2) ?, c = 5.569(1) ?, Z = 4), KAu(2)Ga(4) (III, Immm, a = 4.4070(9) ?, b = 7.339(1) ?, c = 8.664(2) ?, Z = 2), KAu(0.33)Ga(2.67) (IV, I-4m2, a = 6.0900(9) ?, c = 15.450(3) ?, Z = 6). The first two compounds contain different kinds of tunnels built of puckered six- (II) or eight-membered (I) ordered Au/Ga rings with completely different cation placements: uniaxial in I and III but in novel 2D-zigzag chains in II. III contains only infinite chains of a potassium-centered 20-vertex polyhedron (K@Au(8)Ga(12)) built of ordered 6-8-6 planar Au/Ga rings. The main structural feature of IV is dodecahedral (Au/Ga)(8) clusters. Tight-binding electronic structure calculations by linear muffin-tin-orbital methods were performed for idealized models of I, II, and III to gain insights into their structure-bonding relationships. Density of states curves reveal metallic character for all compounds, and the overall crystal orbital Hamilton populations are dominated by polar covalent Au-Ga bonds. The relativistic effects of gold lead to formation of bonds of greater population with most post-transition elements or to itself, and these appear to be responsible for a variety of compounds, as in the K-Au-Ga system.  相似文献   

16.
The present paper describes the Diels–Alder reactions of perfluoroketene dithioacetals with electron-rich 1,3-dienes (2,3-dimethylbuta-1,3-diene, isoprene, penta-1,3-diene) followed by spontaneous HF and thiol elimination, leading to polysubstituted aromatic sulfides in moderate to good yields. Reactions seem to be dependent on the substitution patterns of perfluoroketene dithioacetals; the best results were obtained from trifluoromethyl or pentafluoroethyl and ethylsulfanyl derivatives. Theoretical calculations performed at the DFT level are in good agreement with the experimental results and show that the overall process is controlled by the cycloaddition step.  相似文献   

17.
Both processes of decarboxylation and decarbonylation of a number of acids including RCOCO2H,R=H,CH3,CH2F,CF3,CH=CH2,Ph,OH have been studied by semi-empirical MO theory AMI method to verify the reaction mechanism of each process and the effect of different substituents on them.The calculated results are consistent with the experimental reports and can be summed up as follows:(1) The decarboxylation of these acids to form aldehydes and carbon dioxide is concerted and takes place through a 4-membered ring transition state in which a partial negative charge develops on the carbon of the α-carbonyl group,so that the inductive effect of some substituents is favourable for this process.(2) Their decarbonylation into carboxylic acids and carbon monoxide however is the attack of the OH on the carbon of the alkyl portion of the acid,forming a 3-membered ring transition state.(3) The activation energy of decarbonylation is lower than that of decarboxylation,since oxygen is more nucleophilic than hydrogen and als  相似文献   

18.
The photophysical and photovoltaic properties of three alternated fluorene–thiophene copolymers were studied. With similar structure the copolymers differed by the numbers of thiophene units linked to each fluorene group:one, two and three. The electronic properties were analyzed through mobility measurements and the overall properties pointed out to the one containing the three rings as the best material, as anticipated, due to the larger number of thiophene units. However, after thermal annealing the polymer containing two thiophene rings presented the best photovoltaic efficiency, seven fold greater than the pristine material. The morphology, studied by atomic force microscopy, revealed to be one of the key factors for the performance of the materials as solar cells.  相似文献   

19.
Solid–liquid equilibria (SLE) for the binary mixtures of Irganox 1010 with n-hexane have been measured using a method in which an excess amount of solute was equilibrated with the alkane solution. The liquid concentrations of the Irganox 1010 in the saturated solution were analyzed by UV spectrometry. Activity coefficients for Irganox 1010 have been calculated by means of the Wilson, NRTL and UNIQUAC models and with them were correlated solubility data that were compared with the experimental ones. The best correlation of the solubility data has been obtained by the Wilson model, by which the average root-mean-square deviation of temperature for the system is 0.33 K.  相似文献   

20.
The electrochemical performances of the α-, γ-, and δ-MnO2 with different crystallographic structures were systematically investigated in 0.5 mol/L Li2SO4, 0.5 mol/L Na2SO4, 1 mol/L Ca(NO3)2, and 1 mol/L?Mg(NO3)2 electrolytes. The results showed that the electrochemical performances of the manganese dioxides depended strongly on the crystallographic structures of MnO2 as well as the cation in the electrolytes. Because the δ-MnO2 consists with layers of structure and the interlayer separation is 7 Å, which is suitable for insertion/extraction of some alkaline and alkaline–earth cations, the δ-MnO2 electrode showed the higher specific capacitance than that of α-MnO2 and γ-MnO2. We also found that the α-, γ-, and δ-MnO2 electrodes in the Mg(NO3)2 electrolyte showed a higher specific capacitance, while all the α-, γ-, and δ-MnO2 electrodes in the Li2SO4 electrolyte exhibited a better cycle life. The reason for the different behavior of Li+ and Mg2+ during the charge/discharge process can be ascribed to the charge effect of the cations in the electrolytes. The ex situ X-ray diffraction (XRD) and long-time cyclic voltammogram measurements were used to systematically study the energy storage mechanism of MnO2-based electrodes. A progressive crystallinity loss of the materials is also observed upon potential cycling at the oxidized states. A reasonable charge/discharge mechanism is proposed in this work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号