首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Solid-state 1H NMR is applied to investigate the kinetics of diffusion of H2O molecules in the fibrous zeolite natrolite [Na2Al2Si3O10]?2H2O. It is found that the stepwise heating of the zeolite in air leads to the following pattern of molecular diffusion jumps: at first they increase in number and then decrease exponentially with time. Conducting such an experiment in an aqueous medium leads to the opposite effect. The results obtained confirm our previous suggestion about the importance of interstitial defects, or overhydrated local states, in molecular diffusion.  相似文献   

2.
3.
A new potassium gallosilicate zeolite with a natrolite topology (approximate formula K8.2Ga8.2Si11.8O40.11.5H2O) was synthesized under hydrothermal conditions and characterized as a function of temperature using monochromatic synchrotron X-ray powder diffraction and Rietveld analyses. Unlike the previously known tetragonal K8Ga8Si12O40.6H2O phase, the as-synthesized material contains twice the amount of water molecules in an ordered arrangement throughout the channels in an orthorhombic (I212121) symmetry. The ordered configuration of water molecules is stabilized below 300 K, whereas heating above 300 K results in a selective dehydration and subsequent disordering of water molecules in a tetragonal (I2d) symmetry. Above 400 K, the material transforms to a fully dehydrated tetragonal phase with a concomitant volume reduction of ca. 15%. The fully dehydrated material transforms back to its original state when rehydrated over a period of up to 2 weeks. The distribution of potassium cations within the channels remains largely unperturbed during the water rearrangements and their order-disorder transition within the channels.  相似文献   

4.
Neutron powder diffraction data were collected on a sample of natrolite and a 1:1 (v/v) mixture of perdeuterated methanol and water at a pressure of 1.87(11) GPa. The natrolite sample was superhydrated, with a water content double that observed at ambient pressure. All of the water deuterium atoms were located and the nature and extent of the hydrogen bonding elucidated for the first time. This has allowed the calculation of bond valence sums for the water oxygen atoms, and from this, it can be deduced that the key energetic factor leading to loss of the additional water molecule upon pressure release is the poor coordination to sodium cations within the pores.  相似文献   

5.
The effects of water on relaxation processes in polysaccharides were investigated by the NMR, adsorption, and comparative methods. It was shown that the relaxation vitrification transition that occurred in polysaccharides during the formation of an adsorption layer about two water molecules thick made the largest contribution to the spin-relaxation processes in the polymer-water system.  相似文献   

6.
In this work, we present results from molecular dynamics simulations on the single-molecule relaxation of water within reverse micelles (RMs) of different sizes formed by the surfactant aerosol-OT (AOT, sodium bis(2-ethylhexyl)sulfosuccinate) in isooctane. Results are presented for RM water content w(0) = [H(2)O]/[AOT] in the range from 2.0 to 7.5. We show that translational diffusion of water within the RM can, to a good approximation, be decoupled from the translation of the RM through the isooctane solvent. Water translational mobility within the RM is restricted by the water pool dimensions, and thus, the water mean-squared displacements (MSDs) level off in time. Comparison with models of diffusion in confined geometries shows that a version of the Gaussian confinement model with a biexponential decay of correlations provides a good fit to the MSDs, while a model of free diffusion within a sphere agrees less well with simulation results. We find that the local diffusivity is considerably reduced in the interfacial region, especially as w(0) decreases. Molecular orientational relaxation is monitored by examining the behavior of OH and dipole vectors. For both vectors, orientational relaxation slows down close to the interface and as w(0) decreases. For the OH vector, reorientation is strongly affected by the presence of charged species at the RM interface and these effects are especially pronounced for water molecules hydrogen-bonded to surfactant sites that serve as hydrogen-bond acceptors. For the dipole vector, orientational relaxation near the interface slows down more than that for the OH vector due mainly to the influence of ion-dipole interactions with the sodium counterions. We investigate water OH and dipole reorientation mechanisms by studying the w(0) and interfacial shell dependence of orientational time correlations for different Legendre polynomial orders.  相似文献   

7.
8.
Proton mobility in water clusters   总被引:1,自引:0,他引:1  
Proton mobility in water occurs quickly according to the so-called Grotthuss mechanism. This process and its elementary reaction steps can be studied in great detail by applying suitable mass spectrometric methods to ionic water clusters. Careful choice of suitable core ions in combination with analysis of cluster size trends in hydrogen/deuterium isotope exchange rates allows for detailed insights into fascinating dynamical systems. Analysis of the experiments has been promoted by extensive and systematic quantum chemical model calculations. Detailed low-energy mechanistic pathways for efficient water rearrangement and proton transfer steps, in particular cases along short preformed "wires" of hydrogen bonds, have been identified in consistency with experimental findings.  相似文献   

9.
The thermally stimulated current (TSC) technique has been used to perform a detailed study of the complex relaxation modes observed in poly-L -proline II. Each mechanism has been resolved into elementary processes, each well described by using the assumption of a single relaxation time following an Arrhenius equation. This resolution allows us to predict the complex dielectric constant for temperatures between 77 and 400°K and frequencies between 10?6 and 104 Hz. In the range where experimental results are available, the predicted energy losses are in very good agreement with those measured by DC transient experiments, the pendulum technique without contacting electrodes, and the AC bridge. We discuss the probable origin of the various relaxation modes. The relaxation observed at the highest temperature may be attributed to electrons trapped at the boundaries between paracrystalline and crystalline regions. From the changes in the relaxations caused by bound water, we conclude that there are two types of water interacting with the macromolecular substrate. With increasing water content, the relaxation modes observed may first be due to water tightly bound between two carbonyl groups of adjacent chains and second, to increased stiffness of the poly-L -proline chain from more mobile water.  相似文献   

10.
11.
12.
13.
The mechanism of spin-lattice relaxation of radicals in magnetically diluted molecular crystals caused by delocalization of the unpaired electron is considered.The authors thank I. V. Aleksandrov for a number of helpful remarks during discussions of this investigation.  相似文献   

14.
The behavior of Li-exchanged natrolite Li1.92Na0.10[Al2.02Si2.98O10]?2H2O at compression in penetrating (water-containing) medium was studied by in situ synchrotron powder diffraction in diamond anvil cell up to 2.5 GPa. Within 0-1.3 GPa the compression is almost isotropic, and upon the further pressure increase the sample undergoes additional hydration, leading to abrupt volume expansion by 22%, a record value for natrolite. In the proposed model for the high-pressure phase Li2[Al2Si3O10]?6H2O the Li+ cations have no contact with the framework O-atoms and are surrounded by “water-jacket” in the form of semi-octahedron (tetragonal pyramid) composed of five H2O molecules. Such polyhedra, lining up along the channel axis, are joined through their edges and create a “water” column expanding the structure.  相似文献   

15.
To test a new interaction potential, molecular dynamics simulations of zeolite natrolite were performed for the structures under ambient conditions hydrated by perdeuterated water and at high pressure (1.87 GPa) in the superhydrated phase, which were recently studied by neutron diffraction. The experimental structures were reproduced with reasonable accuracy, and the hydrogen bond features are discussed. As in ordinary natrolite, a flip motion of water molecules around the HOH bisector is found, which, together with translational oscillations, gives rise to transient hydrogen bonds between water molecules, which do not appear from experimental equilibrium coordinates. The dynamics of water molecules can explain some problems encountered in refining the experimental structure. Vibrational spectra of natrolite containing perdeuterated water, which are not yet measured, were simulated, and their qualitative trend is discussed.  相似文献   

16.
17.
Dielectric data were taken on nylon 66 at several moisture levels at frequencies from 10 to 105 Hz and temperatures from ?70°C to room temperature. Moisture increases the frequency and the peak height for the β relaxation and reduces its activation energy. The peak height of the γ relaxation is reduced by moisture and shifts to slightly higher frequencies with little change in activation energy. The β relaxation follows the pattern of Jonscher and Ngai for a cooperative many-body process. The γ relaxation is slightly broader than a Debye relaxation and approaches that model quite closely as the temperature is increased. The high-frequency end of the β relaxation overlaps the γ relaxation.  相似文献   

18.
19.
Powder diffraction patterns of the zeolites natrolite (Na(16)Al(16)Si(24)O(80).16H(2)O), mesolite (Na(5.33)Ca(5.33)Al(16)Si(24)O(80).21.33H(2)O), scolecite (Ca(8)Al(16)Si(24)O(80).24H(2)O), and a gallosilicate analogue of natrolite (K(16)Ga(16)Si(24)O(80).12H(2)O), all crystallizing with a natrolite framework topology, were measured as a function of pressure up to 5.0 GPa with use of a diamond-anvil cell and a 200 microm focused monochromatic synchrotron X-ray beam. Under the hydrostatic conditions mediated by an alcohol and water mixture, all these materials showed an abrupt volume expansion (ca. 2.5% in natrolite) between 0.8 and 1.5 GPa without altering the framework topology. Rietveld refinements using the data collected on natrolite show that the anomalous swelling is due to the selective sorption of water from the pressure-transmission fluid expanding the channels along the a- and b-unit cell axes. This gives rise to a "superhydrated" phase of natrolite with an approximate formula of Na(16)Al(16)Si(24)O(80).32H(2)O, which contains hydrogen-bonded helical water nanotubes along the channels. In mesolite, which at ambient pressure is composed of ordered layers of sodium- and calcium-containing channels in a 1:2 ratio along the b-axis, this anomalous swelling is accompanied by a loss of the superlattice reflections (b(mesolite) = 3b(natrolite)). This suggests a pressure-induced order-disorder transition involving the motions of sodium and calcium cations either through cross-channel diffusion or within the respective channels. The powder diffraction data of scolecite, a monoclinic analogue of natrolite where all sodium cations are substituted by calcium and water molecules, reveal a reversible pressure-induced partial amorphization under hydrostatic conditions. Unlike the 2-dimensional swelling observed in natrolite and mesolite, the volume expansion of the potassium gallosilicate natrolite is 3-dimensional and includes the lengthening of the channel axis. In addition, the expanded phase, stable at high pressure, is retained at ambient conditions after pressure is released. The unprecedented and intriguing high-pressure crystal chemistry of zeolites with the natrolite framework topology is discussed here relating the different types of volume expansion to superhydration.  相似文献   

20.
《Thermochimica Acta》1986,109(1):237-242
A series of K-exchanged forms of natrolite are easily obtained by treatment with KCl solution at room temperature for 1–62 days. The maximum degree of exchange of K is 91.94%. The thermal behavior of the exchanged forms is studied by DTA-TG and high temperature X-ray powder diffraction. The DTA curve of the exchanged form of the 91.94% sample exhibits a single large endotherm at 150°C due to a one-step dehydration, showing the remarkable decrease in dehydration temperature compared with natrolite. The dehydrated phase of natrolite collapses at about 800°C, while destruction of the dehydrated K-form occurs above 1000°C. It is well recognized that the thermal stability of natrolite is increased by Na-K exchange.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号