首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The new mixed-ligand complex of [Tl(Ph2phen)Cl3(DMSO)] (1) is obtained from the reaction of TlCl3?4H2O with 4,7-diphenyl-1,10-phenanthroline (Ph2phen) in a methanol solution. Suitable crystals of 1 are obtained for the X-ray diffraction measurement by methanol diffusion into a DMSO solution. This complex is characterized by spectral methods (IR, UV-Vis, 1H NMR, and luminescence), elemental analysis, thermal analysis (TG, DTA), and single crystal X-ray diffraction.  相似文献   

2.
New mixed valence gold(III/I) salt containing two complexes [Au(Me2phen)Br2][AuBr2] (1) was prepared from the reaction of AuBr3 and 5,6-dimethyl-1,10-phenanthroline (Me2phen) in a mixture of methanol and acetonitrile. Suitable crystals of 1 for X-ray diffraction measurement were obtained by slow evaporation of the resulted red solution at room temperature. This complex was characterized by spectral methods (IR, UV–Vis and 1H NMR), elemental analysis and single-crystal X-ray diffraction. The X-ray structural analysis indicated that the asymmetric unit of 1 contains one [Au(Me2phen)Br2]+ cation and two half anions of [AuBr2]ˉ. Furthermore, the packing diagram of this complex, 3-D structure stabilized by intermolecular Au…Br and Au…π interactions and intermolecular C–H···Br hydrogen bonds. The experimental investigations on complex have been accompanied computationally by the density functional theory (DFT) and time-dependent DFT calculations. The nature of the Au–N bonds was investigated using quantum theory of atoms in molecules. Moreover, natural bond orbital analysis carried out to obtain hyper-conjugative interactions and electron delocalization on the complex.  相似文献   

3.
According to the data of 1H NMR spectroscopy, trans-hydroxochloro complexes containing from two to four pyridine molecules in the internal sphere are formed on the heating of a dilute aqueous solution of K2[Ru(NO)Cl5] with pyridine. The evaporation of the reaction solution with concentrated hydrochloric acid gives fac-[Ru(NO)(Py)2Cl3] (I) in a yield of ~90%. The structures of two crystalline modifications of this complex are determined by X-ray diffraction analysis (CIF files ССDС nos. 1452208 (Ia) and 1452207 (Ib)). IR spectroscopy shows that the irradiation of complex I (λ ~ 450 nm, T = 80 K) results in photoisomerization with the formation of the metastable state MS1 in which the nitroso group is coordinated by the oxygen atom. The activation parameters of the photoisomerization are determined from the data of differential scanning calorimetry (DSC). Compound trans-[Ru(NO)Py4(OH)]Cl2 ? H2O is isolated in a yield of ~70% on reflux of complex I with a pyridine excess in an aqueous solution, and the presence of molecules of water of crystallization in this compound is confirmed by thermal gravimetry (TG) and IR spectroscopy.  相似文献   

4.
The proton transfer compound (Hdap)(chelH)·2H2O (1) and its related anionic complex (Hdap) [VO2(chel)] (2), where chelH2 = 4-hydroxypyridine-2,6-dicarboxylic acid (chelidamic acid) and dap = 3,4-diaminopyridine, were synthesized and characterized by elemental analysis, spectroscopy (IR, UV–Vis), thermal (TG/DTG) analysis and single-crystal X-ray diffraction. Compound 1 resulted from proton transfer between chelH2 and dap in aqueous solution. In 1, two carboxylic acids of chelH2 were deprotonated and the protons transferred to the nitrogen atoms of one chelidamate anion and one dap moiety. Compound 2 resulted from complexation of 1 and vanadyl sulfate. In the crystal structure of 2, the metal ion is five coordinated by one tridentate ligand (chel)2? and two O2? anions, with (Hdap)+ as a counter cation. In both structures, a complicated hydrogen-bonding network accompanied with π–π, C–O···π and C–H···π stacking interactions leads to formation of a 3D supramolecular network. In the following, solution studies have been performed by means of pH potentiometric titrations method as a power technique. This method was used for determination of protonation constants of chelH2 and dap in their probable protonated forms and for calculation of equilibrium constants for the chelH2–dap proton transfer system and the stoichiometry and stability constants of binary and ternary complexes of this system with VO2+ ion in aqueous solution. The stoichiometries of the most complex species in solution were compared with the corresponding crystalline complexes in the solid state.  相似文献   

5.
Zinc(II) complexes of 4-aminoantipyrine (AAP), [Zn(AAP)2X2] (X = Cl, I) and [Zn(AAP)(CN)2] · 2H2O were prepared and characterized by elemental analysis, IR and NMR (1H & 13C) spectroscopy. The crystal structure of [Zn(AAP)2Cl2] (1) was determined by X-ray crystallography. The structural analysis of 1 shows that the complex exists as a monomeric nonionic molecule with zinc atom bound to two AAP ligands and two chloride ions adopting a distorted tetrahedral geometry. In [Zn(AAP)2(CN)2] · 2H2O, the appearance of a band at 2162 cm–1 in IR and resonances around 142 ppm in the 13C NMR spectra indicated the binding of cyanide to zinc(II).  相似文献   

6.
The aim of the article is to investigate the influence of particle size on titanium dioxide phase transformations. Nanocrystalline titanium dioxide powder was obtained through a hydrothermal procedure in an aqueous media at high pressure (in the range 25–100 atm) and low temperature (≤200 °C). The as-prepared samples were characterized with respect to their composition by ICP (inductive coupled plasma), structure and morphology by XRD (X-ray diffraction), and TEM (transmission electron microscopy), thermal behavior by TG (thermogravimetry) coupled with DSC (differential scanning calorimetry). Thermal behavior of nanostructured TiO2 was compared with three commercial TiO2 samples. The sequence of brookite–anatase–rutile phase transformation in TiO2 samples was investigated. The heat capacity of anatase and rutile in a large temperature range are reported.  相似文献   

7.
The synthesis of binuclear ruthenium(IV) oxochloride complex and reaction of the latter with LiCl in a 2.5 M HCl solution have been carried out. The reaction of Ru(IV) binding in solution leads to the formation of a new cluster compound Li8Ru2OCl14 (I) whose molecular structure has been determined by X-ray diffraction. The crystals are tetragonal, space group \(I\bar 42m\), a = 7.08 Å, c = 17.00 Å, V = 852.18 Å3, Z = 2. Supramolecular structural self-organization of I includes the formation of layers parallel to the xy plane. The high thermal stability of complex I and retention of its dinuclear structure in an acidic environment have been shown by thermal analysis and IR and electronic spectroscopy. It has been found that cluster I is an efficient catalyst for water oxidation in artificial photosynthesis.  相似文献   

8.
Epitaxially grown titanium dioxide (TiO2) nanofibers embedding single crystalline TiO2 nanowires (NWs) were successfully fabricated by electropinning poly(vinyl pyrrolidone)/ethanol solutions mixed with hydrothermally synthesized TiO2 NWs and titanium isopropoxide precursors and subsequently calcinating the electrospun nanofibers. Utilizing scanning electron microscopy (SEM) and transmission electron microscopy (TEM), the morphologies of TiO2 NWs and nanofibers were investigated. High resolution TEM (HR-TEM) and selected area electron diffraction (SAED) allowed us to indentify the fact that, during the calcination process under the optimized condition, titanium isopropoxide precursors were epitaxially crystallized on the surface of single crystalline TiO2 NWs. Based on the X-ray diffraction (XRD) experiments, it was also realized that the crystalline structure of hydrothermally synthesized TiO2 NWs and epitaxially crystallized TiO2 nanofibers is anatase and that TiO2 composite nanofibers embedding TiO2 NWs exhibited a higher crystallinity than the pristine TiO2 nanofibers. Additionally, ultraviolet visible (UV–Vis) spectra of nanofibers indicated that optical properties of TiO2 nanofibers can be tuned by introducing the single crystalline TiO2 NWs.  相似文献   

9.
A TiO2/monazite photocatalyst was prepared by embedding TiO2 nanoparticles into a monazite substrate surface. TiCl4 hydrolysis/citric acid chelating procedure under acidic conditions were used to synthesize the nanophase TiO2 particles. The anatase TiO2/monazite photocatalyst surface area, morphology, crystalline and elemental concentrations were characterized using Brunauer-Emmett-Teller (BET) method, scanning electron microscopy (SEM), X-ray diffraction (XRD), and inductively coupled plasma-atomic emission spectrometry (ICP-AES). Monazite contains a large amount of Ce-, La-, Nd- and Th-PO4 compounds; it has been known as a natural mineral material with minor radioactivity. TiO2-CeO2 composite is a kind of radiation sensitive photocatalyst in which the radiations of thorium nuclides give energy to trigger TiO2 and cerium ions which play an energy absorber with charge separator. The result showed that methylene blue and phenol were spontaneously photocatalytic decomposed by TiO2/monazite composite even in a dark environment. A synergistic effect was also examined with applied exterior UV or 60Co irradiation. A hybrid mechanism is proposed; according by the radioluminescence (RL) from excited Ce ion by γ-radiation soliciting CeO2/TiO2 heterojunction (HJ). This seems to be a possible mechanism to explain this self-activated photo-catalytic behavior.  相似文献   

10.
A new Mo2O3(dpm)4 compound (I) is synthesized by the interaction of Mo(CO)6 with 2,2,6,6-tetramethylheptanedione-3,5 (dpm). The structure of complex I determined by the XRD method is as follows: triclinic crystal system, space group P–1, a = 10.1780(7) Å, b = 10.1817(6) Å, c = 13.3255(9) Å, α = 110.562(2)°, β = 102.233(2)°, γ = 93.9041(19)°, V = 1248.17(14) Å3. The compound is characterized by IR spectroscopy, mass-spectrometry and thermogravimetric analysis (TGA).  相似文献   

11.
In this research work, crystalline structure, phase transformation, morphology and mean size of titanium dioxide (TiO2) electrospun nanofibers have been tailored by loading with 2.5, 5.0 and 7.5 wt.% of silver (Ag) which was followed by calcination. The as prepared non woven mats of nanofibers were calcinated at 500 °C to allow the reaction moieties to leave the TiO2 matrix and subsequently formation of Ag clusters. The effect of Ag loading and calcination on the transformation of microstructure of these electrospun nanofibers have been characterized by XRD, FESEM, FT-IR and Raman spectroscopy (RS). The mean diameter of Ag loaded nanofibers has been found to decrease upon calcination which was estimated to 70 nm whereas length was in the order of mm range. XRD and RS results have strongly supported the transformation of crystalline phase from rutile (A) to anatase (R) above 2.5 wt.% of Ag loading in TiO2 after calcination. The roughness on the outer surfaces of these nanofibers has been observed to increase with the Ag loading consequent to calcination, which has been attributed to the formation Ag nanoparticles that were found adsorbed at the surfaces. An interesting finding of this study is the existence of 1D nanofibers’ structure even at higher (7.5 wt.%) Ag loading, as observed by the SEM micrographs.  相似文献   

12.
Results on the density of sates of nanostructured TiO2 as a function of particle size and temperature are reported. In TiO2 nanoparticles with a mean diameter 10 nm, the density of states (DOS) is strongly temperature-dependent, indicating a rearrangement of the bandgap states in which the exponential energy parameter (width of the distribution) increases from 0.080 to 50 °C. For nanoparticles with mean diameters of 20 and 30 nm the DOS is much closer to an exponential distribution, and is much less sensitive to temperature variations. It is suggested that nanometer confinement has a significant influence on the density of electronic states for 10-nm particles, while band tailing is similar to that occurring in bulk semiconductors for the larger particles.
Juan BisquertEmail:
  相似文献   

13.
As a new precursor to prepare nano molybdenum trioxide, methanol {2-[(2-hydroxy-1,1-dimethylethylimino)-methyl]phenolato}dioxidomolybdenum(VI) complex (1) with the Schiff base ligand (H2L) is synthesized by two different methods: solvothermal and sonochemical. Nanoparticles of 1 are obtained by one-pot solvothermal treatment of methanolic solutions of the ligand and di-oxomolybdenyl acetylacetonate at 150°C for 24 h and for improving the quality of nanostructures by sonochemical method with two types of solvents, different concentrations of initial reagents and also different sonication times. The thermal stability of nanosized compound 1 is studied by thermal gravimetric (TG) analysis and differential scanning calorimetry (DSC). Nanoparticles of orthorhombic α-MoO3 are obtained by calcination of nanostructures of compound 1 at 700°C. All compounds and the obtained molybdenum trioxide nanostructures are characterized by elemental analysis, FT-IR, UV-Vis spectroscopy, X-ray powder diffraction (XRD), and scanning electron microscopy (SEM).  相似文献   

14.
1H, 19F, 31P NMR, DSC, and XRD methods are used to study ionic mobility and structural transformations in the CsSbF3(H2PO4) compound (I). Radical changes in 1H, 19F, 31P NMR spectra above 390 K are associated with a crystalline disordered phase which forms in I at 400–420 K. This phase demonstrates high ionic mobility and further transforms (above 425 K) into the amorphous (glassy) phase. We have determined the types of ionic mobility in this compound and in its amorphous product. According to the NMR data, the diffusion in the proton sublattice of the disordered and amorphous phases proceeds even at room temperature.  相似文献   

15.
A novel copper(II) complex {[Cu(BIX)2(H2O)2](PhCOO)2} n (1) (BIX = 1,4-bis(imidazole-1-methyl))-benzene) is synthesized and characterized by elemental analysis, IR, TG, and single crystal X-ray diffraction. Complex 1 crystallizes in the triclinic crystal system with the P-1 space group, Z = 1, a = 9.465(2) Å, b = 9.703(2) Å, c = 12.060(2) Å, α = 77.26(3)°, β = 70.37(3)°, γ = 67.14(3)°, and V = 956.1(3) Å3. The crystal structural analysis of complex 1 shows that the copper center is six-coordinated in an elongated octahedral geometry by four N atoms from four different BIX and two O atoms from two water molecules; two neighboring Cu(II) cations are bridged by two BIX extending into an infinite 1D double chain structure.  相似文献   

16.
A new two-dimensional lead(II) coordination polymer, [Pb(Pro)2] n (1); Pro = l-proline amino acid, has been synthesized and characterized by IR and X-ray diffraction. Structural determination of compound 1 reveals the Pb(II) ion is four-coordinated, bonded to two nitrogen atoms and two oxygen atoms from the l-proline ligand. PbO nanoparticles were synthesized by calcination of compound 1 at 500, 550 and 600 °C under air atmosphere. The PbO nanostructure was characterized by scanning electron microscopy (SEM) and X-ray powder diffraction (XRD). The thermal stability of compound 1 was studied by thermal gravimetric analysis (TGA) and differential thermal analysis (DTA). Increase in calcination temperature decreased particles size and also led to layer-shape nanostructures morphology.  相似文献   

17.
Solid-state conversion of NaI coordination polymer nanostructure, synthesized by sonochemical procedure, to TlI coordination polymer has been observed upon liquid-assisted mechanochemical reaction of [Na2TP] n (1) (H2TP = terephthalic acid), with TlNO3. During this conversion, ion exchange process of Na(I) with Tl(I) was occurred and [Tl2TP] n (2) was synthesized. The X-ray diffraction (XRD) pattern of 2 after mechanochemical reaction of it with NaNO3 indicated that this transformation is irreversible. Compounds 1 and 2 were characterized by IR spectroscopy, X-ray powder diffraction (XRD), elemental analysis, thermogravimetric and differential thermal analyses and scanning electron microscopy.  相似文献   

18.
Mixed IrO2–TiO2 oxides were prepared by the sol–gel method upon acid-catalysed hydrolysis of an iridium solution in ethanol mixed with titanium tetraethoxide in ethanol. The iridium solution was obtained by reaction of the sodium hexachloroiridate(IV) precursor in the presence of sodium ethoxide in ethanol. Gels were formed in all but the high-Ir samples. Analysis of the dried gels showed minority-phase enrichment at the surface and the presence of Ir(III), while microscopy showed evidence for dispersed iridium-containing nanoparticles (1–20 nm in diameter). XRD powder patterns of the calcined material showed peaks due to a small amount of crystalline NaCl impurity which could be removed by washing. This left amorphous phases, except in the Ir:Ti 3:2 case, which showed evidence for the presence of separate crystalline oxide phases: anatase, IrO2 and Ti x Ir1−x O2.  相似文献   

19.
Undoped, single-doped, and codoped TiO2 nanoparticles were prepared by the sol-gel method and characterized with X-ray diffraction (XRD), the Brunauer-Emmett-Teller (BET)-specific surface area (SBET), UV-Vis absorption spectra (UV-Vis), and X-ray photoelectron spectroscopy (XPS). Their photocatalytic activity was evaluated by methyl orange (MO) degradation in an aqueous suspension under UV or simulated solar light illumination. XRD showed that all samples calcined at 600°C preserved the anatase structure, and doping inhibited the increase of crystallite size. The BET result revealed that doping improved the surface area of TiO2. UV-Vis indicated that Fe3+-doping broadened the absorption profile of TiO2. XPS demonstrated that doping was advantageous to absorb more surface hydroxyl groups or chemisorbed water molecules. Photocatalytic degradation showed that the photocatalytic activity of TiO2 codoped with Fe3+ and Ho3+ ions was markedly improved. This was ascribed to the fact that there was a cooperative action in the two doped elements. Fe3+-doping broadens the absorption profile, improves photo utilization of TiO2, and then generates more electronhole pairs. Ho3+-doping restrains the increase in grain size and retards the recombination of photo-generated electrons and holes.  相似文献   

20.
The reduction of 1,2-bis[(2,6-diisopropylphenyl)imino]acenaphthene (dpp-bian) with an excess of europium metal in 1,2-dimethoxyethane (dme) produces a divalent europium complex with the dpp-bian dianion, [(dpp-bian)Eu(dme)2] (1). The reactions of 1 with phenyl-acetylene and camphor proceed via protonation of the diimine ligand to form the monomeric amido-amino complexes of divalent europium — [H(dpp-bian)Eu(C≡CPh)(dme)2] (2) and [H(dpp-bian)Eu(camphor)(dme)2] (3), respectively. Compounds 2 and 3 were characterized by IR spectroscopy and elemental analysis. Their molecular structures were determined by X-ray diffraction. Compounds 2 and 3 were shown to be monomeric seven-coordinate europium(ii) complexes with terminal phenylethynyl and enol ligands, respectively. According to the IR spectroscopic data, the terminal ligands in complexes 2 and 3 undergo tautomerization involving backward proton transfer from the amido-amino ligand to the substrate. The magnetic moment of compound 2 (8.03 μB) remains constant in the temperature range of 4—300 К and confirms the presence of divalent europium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号