首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The temperature dependence of three principal refractive indices of the biaxial KGd(WO4)2 and KY(WO4)2 crystals in the temperature range of 288–673 K was measured at wavelengths of 438.5 and 632.8 nm. Their thermo-optical coefficients (TOC) of the first and second orders were determined on the basis of the experimental data obtained. TOC were found to be negative for the ng and np refractive indices of the KY(WO4)2 crystal and for the ng refractive index of the KGd(WO4)2 crystal. It was established that in a fairly wide temperature range contributions of the positive and negative TOC to the refractive index of a light wave propagating in these crystals in certain directions compensate each other. Such athermal directions were determined for the index ellipsoid principal planes of these crystals on the basis of experimental data. PACS 78.20.Ci; 78.20.Nv  相似文献   

2.
The magnitude and character of conductivity were studied for Y2(WO4)3 ceramics synthesized by the ceramic (from oxides) and organic-nitrate procedures. Investigation of the dependence \(\sigma \left( {{\alpha _{{o_2}}}} \right)\) and measurements of the ion transport numbers of charge carriers by the EMF method showed that Y2(WO4)3 is basically an ion conductor. The conductivity is largely determined by the sample preparation conditions related to the dependence of the specific surface area and powder grain size on the synthetic procedure. The maximum high-temperature conductivity of Y2(WO4)3 was 2.51 × 10–4 S/cm, which roughly corresponds to the conductivities of Sc2(WO4)3 and In2(WO4)3 measured under the same conditions. It was confirmed that Y2(WO4)3 crystallizes as a mixed monoclinic-orthorhombic structure at 1000°C. The character of water incorporation in hydrated Y2(WO4)3 crystals was studied by thermogravimetry and diffuse reflectance IR spectroscopy. A qualitative model of water intercalation was suggested.  相似文献   

3.
NaBi(WO4)2:In (called NBW) colorless Cherenkov crystals were synthesized and studied. A decrease in the concentration of color centers provides a 50-nm blueshift of the optical transmission spectrum of NBW crystals. Upon exposing these crystals to gamma rays at a dose of 3 · 107 rad, the optical transmission spectra in these crystals remain almost the same. The energy resolution (calculated by the Monte Carlo method) of calorimeters based on NBW crystals of different compositions is discussed.  相似文献   

4.
The thermal properties and structure of (ND4)2WO2F4 crystals are investigated. It is established that deuteration does not lead to a change in the symmetry of the initial phase Cmcm but considerably decreases the extent of its disordering, which, in turn, brings about a substantial decrease in the phase transition entropy. Apart from the anomalies associated with phase transitions characteristic of the protonic compound, the heat capacity exhibits two additional anomalies. Analysis of the phase diagram of the deuterated crystal reveals a triple point at a pressure p = 0.18 GPa, which is predicted for (NH4)2WO2F4 at about 0.7 GPa.  相似文献   

5.
We present results of the characterization of the nonlinear refractive index of the laser crystal Yb:KGd(WO4)2 using a z-scan technique over the 800–1600 nm wavelength range. Based on our experimental and theoretical results we conclude that Yb:KGW crystal is a good candidate for efficient Kerr-lens mode locking. PACS 42.65.An; 42.65.Hw; 42.55.Rz; 42.65.Re  相似文献   

6.
The EPR spectrum of a KDy(WO4)2 monoclinic crystal is investigated. It is found that the EPR spectrum of magnetically concentrated materials at a low frequency (9.2 GHz) undergoes a substantial transformation in addition to the well-known broadening of the EPR lines. At low Dy3+ concentrations (x<10?2), the EPR spectrum of an isomorphic crystal, namely, KY(1?x)Dyx(WO4)2, is characterized by the parameters gx=0, gy=1.54, and gz=14.6. For a magnetically concentrated crystal KDy(WO4)2, the g values are as follows: gx=0, gy=0.82, and gz=2.52. It is demonstrated that the difference in the parameters is associated with the specific spin-spin interaction between Dy3+ ions, including the Dzyaloshinski interaction, which is not observed at high frequencies.  相似文献   

7.
The discovery of stimulated Raman scattering (SRS) in a CsLa(WO4)2 crystal and the first results of studying its steady-state χ(3)-nonlinear generation within the visible wavelength range are reported. This result has imparted the status of a multifunctional crystal with laser (with generating Ln3+ ions) and SRS-potential to tetragonal cesium-lanthanum tungstate.  相似文献   

8.
This paper presents the crystal growth and optical characterization of thulium-doped KLu(WO4)2 (KLuW). Thulium-doped KLuW macrodefect-free monoclinic single crystals (a*×b×c≈10×7×15 mm3) were grown by the top seeded solution growth slow cooling method with dopant concentrations of 0.5%, 1%, 3% and 5% atomic in solution. The evolution of unit cell parameters in relation with thulium doping was studied by X-ray powder patterns. Thulium energy levels in the KLuW host were determined by 6 K polarized optical absorption. The Judd–Ofelt parameters determined were Ω2=9.01×10-20 cm2, Ω4=1.36×10-20 cm2 and Ω6=1.43×10-20 cm2. The maximum emission cross section for the 1.9 μm emission, calculated by Füchtbauer–Ladenburg method, is 1.75×10-20 cm2, at 1845 nm with E//Nm. The intensity decay time from the emitting levels 1 G 4 and 3 H 4 levels in relation to the concentration were studied. For the lowest thulium concentration, the measured decay times from 1 G 4 and 3 H 4 emitting levels are 140 μs and 230 μs, respectively. PACS 42.55.Rz; 78.20.-e; 78.55.-m  相似文献   

9.
A Pr3+-doped La2(WO4)3 crystal grown by the Czochralski method has been investigated as a promising laser material. The principal axes of the optical indicatrix and Pr3+ concentration of the crystal were determined. The polarized absorption, fluorescence spectra and fluorescence decay curves of the main emission multiplets of the crystal were measured at room temperature. The spectroscopic parameters were obtained by the modified Judd–Ofelt theory combined with the normalized method. The peak stimulated emission cross-sections of the major emission lines were estimated. The good spectroscopic properties imply that the Pr3+:La2(WO4)3 crystal is a potential laser gain medium for solid-state laser and self-stimulated Raman laser applications. PACS 78.20.-e; 42.70.Hj  相似文献   

10.
A Tm3+-doped NaLa(WO4)2 single crystal with a dimension of Φ20 mm×40 mm was grown by the Czochralski method. Anisotropic thermal expansion coefficients of this crystal were investigated. Polarized absorption spectra, emission spectra and decay curve were recorded at room temperature. The absorption and emission cross-section were presented. Based on the Judd–Ofelt analysis, we obtained the three intensity parameters: Ω2=10.21×10-20, Ω4=2.66×10-20, and Ω6=1.46×10-20 cm2. The radiative probabilities, radiative lifetimes, and branch ratios of Tm3+:NaLa(WO4)2 were calculated, too. Luminescence lifetime of the 3 H 4 level was measured to be 220 μs. The stimulated emission cross-section for the 3 F 43 H 6 transition were determined using the reciprocity method, potential laser gain for this transition were also investigated, the gain curves implied that the tunable range is up to 200 nm. PACS 42.70.Hj; 78.20.-e  相似文献   

11.
Polycrystalline Li2WO4 was sintered at temperatures, 400, 450, 500, 550, 600, 650, and 700 °C. After sintering at each particular temperature, the Li2WO4 was cooled to room temperature. The X-ray diffraction pattern of Li2WO4 exhibits dominant peaks attributable to 7Li2WO4.4H2O (cubic) and Li2WO4 (hexagonal) and thus reveals the extent of hydration of the material. The composition varies on heating at several temperatures as shown by the presence of new peaks in the diffractogram. Thermogravimetric analysis is used to correlate respective structural and thermal properties in variation. The impedance spectra show the presence of a semicircle in the higher frequency regions and straight line behaviors at lower frequencies. SEM micrographs depict the image of sintered Li2WO4. Grain growth studies reveal the sensitiveness of grain toward temperature. The maximum grain size is observed to be ≈5.7 μm at 700 °C.  相似文献   

12.
The polarized absorption spectra of Tm3+-doped potassium yttrium tungstate (Tm:KY(WO4)2) crystal at room temperature were measured. The emission spectrum and lifetime of the 3 F 4 excited state were determined. Using standard and modified Judd–Ofelt theories, the intensity parameters and the radiative lifetimes were calculated and good agreement with the experimental results was obtained for both theories. Continuous-wave laser operation in Tm:KYW crystal under laser diode pumping at 802 nm and 1750 nm was demonstrated with slope efficiency of 53% and 28% and output power of about 555 mW and 86 mW, respectively. PACS 42.55.Xi; 42.60.Pk; 42.70.Hj  相似文献   

13.
Comparative analysis of the IR absorption and Raman scattering spectra of a polycrystalline sample of perovskite-type oxyfluoride (NH4)3WO3F3 has been performed in the frequency range 370–4000 cm?1 at temperatures from 92 to 303 K, including the transition between the orientationally disordered cubic and low-symmetry phases. The conformation of WO3F3 octahedral groups is established and transitional anomalies of the internal modes of these groups and ammonium ions are revealed. Comparative analysis of the IR and Raman spectra suggests that the phase transition under study is mainly related to the ordering of octahedral groups and formation of W-O…H-N hydrogen bonds.  相似文献   

14.
Upconversion blue emissions of Tm3+-ion-heavy-doped NaY(WO4)2 crystals are investigated with three different near-infrared pump mechanisms. The dependence of upconversion efficiency on the pump mechanism is analyzed from the scope of the concentration quenching effect. Three cross-relaxation processes, , , and , which influence the upconversion dominantly in the Tm3+-heavy-doped system, are demonstrated theoretically and experimentally. The results indicate that Yb3+ ions can weaken the concentration quenching effect of Tm3+ ions significantly so that the blue emission efficiency can be enhanced by one order of magnitude. At the same time, the wavelength of the pump source also has considerable influence on both the population of some crucial energy levels and the upconversion mechanism. Experiments show that the upconversion blue emission in Tm3+/Yb3+ co-doped NaY(WO4)2 crystal under 980-nm laser diode excitation is the most intensive of these three different near-infrared pump mechanisms. The conclusions are confirmed by spectra measurements and calculations of Judd–Ofelt theory and Miyakawa–Dexter theory. PACS 42.70.Hj; 78.55.-m  相似文献   

15.
The three thermo-optic coefficients of the biaxial laser host KLu(WO4)2 are measured at 633 nm by a deflection method. Their values at 300 K amount to n g / T=−7.4×10−6 K−1; n m / T=−1.6×10−6 K−1 and n p / T=−10.8×10−6 K−1. Nearly athermal propagation directions are found for polarizations along the N m and N p dielectric axes.  相似文献   

16.
Concentration series of disordered scheelitelike Yb:NaGd(MoO4)2 and Yb:NaLa(MoO4)2 single crystals are grown by the Czochralski method. The actual concentrations of Yb3+ ions in the crystals are determined by optical-absorption spectroscopy. The luminescence of Yb3+ ions in these crystals in the region of 1 μm is studied under UV and IR excitation. In the case of UV excitation, this luminescence appears as a result of nonradiative excited state energy transfer from donor centers of unknown nature to ytterbium. The character of the concentration dependence of Yb3+ luminescence indicates that the energy transfer at high Yb concentrations occurs with active participation of a cooperative mechanism, according to which the excitation energy of one donor center is transferred simultaneously to two Yb3+ ions. In other words, the quantum yield of this transfer exceeds unity, which can be used to increase the efficiency of crystalline silicon (c-Si) solar cells.  相似文献   

17.
The electron paramagnetic resonance (EPR) of Yb3+ ions in a KY(WO4)2 single crystal was investigated at T=4.2 K and fixed frequency of 9.38 GHz. The resonance absorption observed on the lowest Kramers doublet represents the complex superposition of three spectra, corresponding to the ytterbium isotopes with different nuclear moments. The EPR spectrum is characterized by a strong anisotropy of the g-factors. The temperature dependence of the g-factors is shown to be caused by the strong spin-orbital and orbital-lattice coupling. The resonance lines broaden with increasing temperature due to the short spin-lattice relaxation times.  相似文献   

18.
The results of electron paramagnetic resonance (EPR) and photoluminescence studies of large NaBi(MoO4)2 crystals grown by the low-gradient Czochralski method and doped with gadolinium ions (0.1 wt %) have been presented. It has been found from the analysis of the angular dependence of EPR spectra that the gadolinium ions enter into the crystal structure in the state Gd3+ and occupy the bismuth position. The parameters of the EPR spectra of the gadolinium ions have been calculated and the analogy has been drawn based on these data between the specific features of the incorporation of gadolinium ions into the structures of double tungstates and molybdates. The observed shift of the maximum of the photoluminescence band of the NaBi(MoO4)2 crystals doped with Gd3+ ions with respect to the spectrum of the undoped crystal suggests the influence of gadolinium ions on the formation of the bottom of the conduction band caused by the states of the (MoO4)2?.  相似文献   

19.
Polarized spectral properties of Er3+:NaGd(WO4)2 single crystal are reported. The crystal was grown by the Czochralski method. The Judd–Ofelt theory was applied to analyze the polarized absorption spectra and then calculate the spontaneous emission probabilities, radiative lifetimes, and branching ratios. Fluorescence decay curves of the 4 I 13/2, 4 I 11/2, and 4 S 3/2 multiplets for the Er3+ ions were measured. Stimulated emission cross-sections of the 4 I 13/24 I 15/2 transition obtained by the Fuchtbauer–Ladenberg formula and the reciprocity method were compared. Multi-phonon relaxation rates of the crystal were estimated. Green up-conversion fluorescence around 531 and 552 nm was observed, and the possible up-conversion mechanisms were proposed. PACS 78.20.-e; 42.70.Hj  相似文献   

20.
Optical absorption spectra in thin [N(CH3)4]2CuCl4 crystals in the thickness range 10 μm ≤ d < 100 μm have been studied. Strengthening of the crystal field has been found with a decrease in the [N(CH3)4]2CuCl4 crystal size. The reasons for absorption band shifts in the visible region depending on the [N(CH3)4]2CuCl4 crystal thickness and the manifestation of a size effect in crystals with an incommensurate superstructure are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号