首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The finite element method is used to solve a second order elliptic boundary value problem on a polygonal domain. Mesh refinements and weighted Besov spaces are used to obtain optimal error estimates and inverse theorems.Research performed while at the University of Maryland under a Fulbright fellowshipResearch supported in part by the Department of Energy under the contract E(40-1)3443Research supported in part by the National Institutes of Health under the grant 5R01-AM-20373  相似文献   

2.
We consider a symmetric Galerkin method for the coupling of finite elements and boundary elements for elliptic problems with a monotone operator in the finite element domain. We derive an a posteriori error estimator which involves the solution of equilibrated local Neumann problems in the finite element domain and requires computation of a residual term on the coupling interface. Finally, we discuss a similar approach for a coupling with Signorini contact conditions on the interface. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

3.
The paper is devoted to verification of accuracy of approximate solutions obtained in computer simulations. This problem is strongly related to a posteriori error estimates, giving computable bounds for computational errors and detecting zones in the solution domain where such errors are too large and certain mesh refinements should be performed. A mathematical model consisting of a linear elliptic (reaction-diffusion) equation with a mixed Dirichlet/Neumann/Robin boundary condition is considered in this work. On the base of this model, we present simple technologies for straightforward constructing computable upper and lower bounds for the error, which is understood as the difference between the exact solution of the model and its approximation measured in the corresponding energy norm. The estimates obtained are completely independent of the numerical technique used to obtain approximate solutions and are “flexible” in the sense that they can be, in principle, made as close to the true error as the resources of the used computer allow. This work was supported by the Academy Research Fellowship No. 208628 from the Academy of Finland.  相似文献   

4.
We consider a natural class of composite finite elements that provide the mth-order smoothness of the resulting piecewise polynomial function on a triangulated domain and do not require any information on neighboring elements. It is known that, to provide a required convergence rate in the finite element method, the “smallest angle condition” must be often imposed on the triangulation of the initial domain; i.e., the smallest possible values of the smallest angles of the triangles must be lower bounded. On the other hand, the negative role of the smallest angle can be weakened (but not eliminated completely) by choosing appropriate interpolation conditions. As shown earlier, for a large number of methods of choosing interpolation conditions in the construction of simple (noncomposite) finite elements, including traditional conditions, the influence of the smallest angle of the triangle on the error of approximation of derivatives of a function by derivatives of the interpolation polynomial is essential for a number of derivatives of order 2 and higher for m ≥ 1. In the present paper, a similar result is proved for some class of composite finite elements.  相似文献   

5.
The paper is concerned with the study of an elliptic boundary value problem with a nonlinear Newton boundary condition. The existence and uniqueness of the solution of the continuous pioblem is a consequence of the monotone operator theory. The main attention is paid to the investigation of the finite element approximation using numeriral integration for the evaluation of boundary integrals. The error estimates for the solution of the discrete finite element problem are derived  相似文献   

6.
A posteriori error estimators for the symmetric mixed finite element methods for linear elasticity problems with Dirichlet and mixed boundary conditions are proposed. Reliability and efficiency of the estimators are proved. Finally, numerical examples are presented to verify the theoretical results.  相似文献   

7.
Finite element Galerkin solutions for three classes of nonlinear evolution equations are considered. The existence, uniqueness and convergence of the fully discrete Crank-Nicolson scheme are discussed. At last a linearized Galerkin approximation is presented, which is also second order accurate in time fully discrete scheme.  相似文献   

8.
This paper is aimed at studying finite element discretization for a class of quadratic boundary optimal control problems governed by nonlinear elliptic equations. We derive a posteriori error estimates for the coupled state and control approximation. Such estimates can be used to construct a reliable adaptive finite element approximation for the boundary optimal control problem. Finally, we present a numerical example to confirm our theoretical results.  相似文献   

9.
This paper is concerned with the finite volume element methods on quadrilateral mesh for second-order elliptic equation with variable coefficients. An error estimate in L 2 norm is shown on the quadrilateral meshes consisting of h 2-parallelograms. Superconvergence of numerical solution is also derived in an average gradient norm on h 2-uniform quadrilateral meshes. Numerical examples confirm our theoretical conclusions.  相似文献   

10.
11.
On a three–dimensional exterior domain Ω we consider the Dirichlet problem for the stationary Navier–Stokes system. We construct an approximation problem on the domain ΩR, which is the intersection of Ω with a sufficiently large ball, while we create nonlinear, but local artificial boundary conditions on the truncation boundary. We prove existence and uniqueness of the solutions to the approximating problem together with asymptotically precise pointwise error estimates as R tends to infinity.  相似文献   

12.
In this paper we give weighted, or localized, pointwise error estimates which are valid for two different mixed finite element methods for a general second-order linear elliptic problem and for general choices of mixed elements for simplicial meshes. These estimates, similar in spirit to those recently proved by Schatz for the basic Galerkin finite element method for elliptic problems, show that the dependence of the pointwise errors in both the scalar and vector variables on the derivative of the solution is mostly local in character or conversely that the global dependence of the pointwise errors is weak. This localization is more pronounced for higher order elements. Our estimates indicate that localization occurs except when the lowest order Brezzi-Douglas-Marini elements are used, and we provide computational examples showing that the error is indeed not localized when these elements are employed.

  相似文献   


13.
Summary. We derive pointwise weighted error estimates for a semidiscrete finite element method applied to parabolic equations. The results extend those obtained by A.H. Schatz for stationary elliptic problems. In particular, they show that the error is more localized for higher order elements. Mathematics Subject Classification (2000): 65N30  相似文献   

14.
Summary. Computable a posteriori error bounds for a large class of nonconforming finite element methods are provided for a model Poisson-problem in two and three space dimensions. Besides a refined residual-based a posteriori error estimate, an averaging estimator is established and an -estimate is included. The a posteriori error estimates are reliable and efficient; the proof of reliability relies on a Helmholtz decomposition. Received March 4, 1997 / Revised version received September 4, 2001 / Published online December 18, 2001  相似文献   

15.
This work is devoted to the optimal and a posteriori error estimates of the Stokes problem with some non-standard boundary conditions in three dimensions. The variational formulation is decoupled into a system for the velocity and a Poisson equation for the pressure. The velocity is approximated with curl conforming finite elements and the pressure with standard continuous elements. Next, we establish optimal a posteriori estimates.  相似文献   

16.
Based on the work of Xu and Zhou(2000),this paper makes a further discussion on conforming finite elements approximation for Steklov eigenvalue problems,and proves a local a priori error estimate and a new local a posteriori error estimate in ||·||1,Ω0 norm for conforming elements eigenfunction,which has not been studied in existing literatures.  相似文献   

17.
Thomas Rüberg  Martin Schanz 《PAMM》2007,7(1):4070031-4070032
A methodology for the combination of boundary and finite element discretizations for the numerical analysis of time-dependent problems is presented. The interface conditions arising from the partitioning of the problem are incorporated in a weak form by means of Lagrange multiplier fields and, therefore, allow for nonconform interface discretizations. The resulting system matrices have the same saddle point structure as in the FETI method. Possible applications of the proposed method are the dynamic analysis of soil-structure interaction and similar wave propagation phenomena in unbounded media. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
For a general class of finite element spaces based on local polynomial spaces E with PpEQp we construct a vertex-edge-cell and point-value oriented interpolation operators that fulfil anisotropic interpolation error estimates.Using these estimates we prove ε-uniform convergence of order p for the Galerkin FEM and the LPSFEM for a singularly perturbed convection-diffusion problem with characteristic boundary layers.  相似文献   

19.
Summary In this paper we consider the approximation by the finite element method of second order elliptic problems on convex domains and homogeneous Dirichlet condition on the boundary. In these problems the data are Borel measures. Using a quasiuniform mesh of finite elements and polynomials of degree 1, we prove that in two dimensions the convergence is of orderh inL 2 and in three dimensions of orderh 1/2.  相似文献   

20.
The symmetric coupling of mixed finite element and boundaryelement methods is analysed for a model interface problem withthe Laplacian. The coupling involves a further continuous ansatzfunction on the interface to link the discontinuous displacementfield to the necessarily continuous boundary ansatz function.Quasi-optimal a priori error estimates and sharp a posteriorierror estimates are established which justify adaptive mesh-refiningalgorithms. Numerical experiments prove the adaptive couplingas an efficient tool for the numerical treatment of transmissionproblems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号