首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
The interaction of di(2-picolyl)amine (1) and its secondary N-substituted derivatives, N-(4-pyridylmethyl)-di(2-picolyl)amine (2), N-(4-carboxymethyl-benzyl)-di(2-picolyl)amine (3), N-(4-carboxybenzyl)-di(2-picolyl)amine (4), N-(1-naphthylmethyl)-di(2-picolyl)amine (5), N-(9-anthracenylmethyl)-di(2-picolyl)amine (6), 1,4-bis[di(2-picolyl)aminomethyl]benzene (7), 1,3-bis[di(2-picolyl)aminomethyl]benzene (8) and 2,4,6-tris[di(2-picolyl)amino]triazine (9) with Ni(II) and/or Zn(II) nitrate has resulted in the isolation of [Ni(1)(NO3)2], [Ni(2)(NO3)2], [Ni(3)(NO3)2], [Ni(4)(NO3)2]·CH3CN, [Ni(5)(NO3)2], [Ni(6)(NO3)2], [Ni2(7)(NO3)4], [Ni2(8)(NO3)4], [Ni3(9)(NO3)6]·3H2O, [Zn(3)(NO3)2]·0.5CH3OH, [Zn(5)(NO3)2], [Zn(6)(NO3)2], [Zn(8)(NO3)2] and [Zn2(9)(NO3)4]·0.5H2O. X-ray structures of [Ni(4)(NO3)2]·CH3CN, [Ni(6)(NO3)2] and [Zn(5)(NO3)2] have been obtained. Both nickel complexes exhibit related distorted octahedral coordination geometries in which 4 and 6 are tridentate and bound meridionally via their respective N3-donor sets, with the remaining coordination positions in each complex occupied by a monodentate and a bidentate nitrato ligand. For [Ni(4)(NO3)2]·CH3CN, intramolecular hydrogen bond interactions are present between the carboxylic OH group on one complex and the oxygen of a monodentate nitrate on an adjacent complex such that the complexes are linked in chains which are in turn crosslinked by intermolecular offset π-π stacking between pyridyl rings in adjacent chains. In the case of [Ni(6)(NO3)2], two weak CH?O hydrogen bonds are present between the axial methylene hydrogen atoms on one complex and the oxygen of a monodentate nitrate ligand on a second unit such that four hydrogen bonds link pairs of complexes; in addition, an extensive series of π-π stacking interactions link individual complex units throughout the crystal lattice. The X-ray structure of [Zn(5)(NO3)2] shows that the metal centre once again has a distorted six-coordinated geometry, with the N3-donor set of N-(1-naphthylmethyl)-di(2-picolyl)amine (5) coordinating in a meridional fashion and the remaining coordination positions occupied by a monodentate and a bidentate nitrato ligand. The crystal lattice is stabilized by weak intermolecular interactions between oxygens on the bound nitrato ligands and aromatic CH hydrogens on adjacent complexes; intermolecular π-π stacking between aromatic rings is also present.  相似文献   

3.
By using the neutral bidentate nitrogen-containing ligands; bis(3,5-dimethyl-1-pyrazolyl)methane (L0″), bis(3,5-diisopropyl-1-pyrazolyl)methane (L1″), bis(3-tertiary-butyl-5-isopropyl-1-pyrazolyl)methane (L3″), and bis(3,5-ditertiary-butyl-1-pyrazolyl)methane (L4″), the copper(II) nitrato complexes [Cu(L0″)2(NO3)]NO3 (1NO3), [Cu(L0″)(NO3)2] (2), [Cu(L1″)(NO3)2] (3), [Cu(L3″)(NO3)2] (4), and [Cu(L4″)(NO3)2] (5), chloro complexes [Cu(L0″)2Cl]2(CuCl4) (6CuCl4), [Cu(L0″)2Cl]2(Cu2Cl6) (6Cu2Cl6), [Cu(L1″)Cl2] (7), and [Cu(L3″)Cl2] (8), nitrito complexes [Cu(L0″)(ONO)2] (9) and [Cu(L1″)(ONO)2] (10), and the complexes with perchlorate ions [Cu(L0″)2(CH3OH)](ClO4)2 (11ClO4) and [Cu(L1″)2(H2O)](ClO4)2 (12ClO4) were systematically synthesized and fully characterized by X-ray crystallography and by IR, far-IR, UV–Vis absorption, and ESR spectroscopy. In comparison with the obtained complexes with four bis(pyrazolyl)methanes having different bulkiness at pyrazolyl rings, the second coordination sphere effects on the ligands are discussed in detail. Moreover, the structures and physicochemical properties of these obtained complexes are compared with those of the related complexes with the neutral tridentate tris(pyrazolyl)methane ligand.  相似文献   

4.
A series of novel octahedral nickel(II) dithiocarbamate complexes involving bidentate nitrogen-donor ligands (phen = 1,10-phenanthroline, bpy = 2,2′-bipyridine) or a tetradentate ligand (cyclam = 1,4,8,11-tetraazacycloteradecane) of the composition [Ni(BzMetdtc)(phen)2]ClO4 (1), [Ni(Pe2dtc)(phen)2]ClO4 (2), [Ni(Bzppzdtc)(phen)2]ClO4 · CHCl3 (3), [Ni(Bzppzdtc)(phen)2](SCN) (4), [Ni(BzMetdtc)(bpy)2]ClO4 · 2H2O (5), [Ni(Pe2dtc)(cyclam)]ClO4 (6), [Ni(BzMetdtc)2(cyclam)] (7), [Ni(Bz2dtc)2(cyclam)] (8) and [Ni(Bz2dtc)2(phen)] (9) (BzMetdtc = N,N-benzyl-methyldithiocarbamate(1-) anion, Pe2dtc = N,N-dipentyldithiocarbamate(1-) anion, Bz2dtc = N,N-dibenzyldithiocarbamate(1-) anion, Bzppzdtc = 4-benzylpiperazinedithiocarbamate(1-) anion), have been synthesized. Spectroscopic (electronic and infrared), magnetic moment and molar conductivity data, and thermal behaviour of the complexes are discussed. Single crystal X-ray analysis of 3 and 8 confirmed a distorted octahedral arrangement in the vicinity of the nickel atom with a N4S2 donor set. They represent the first X-ray structures of such type complexes. The catalytic influence of complexes 2, 3, 6, and 7 on graphite oxidation was studied and discussed.  相似文献   

5.
Four new ligands, (4-methyl-phenyl)-pyridin-2-ylmethylene-amine (A), (2,3-dimethyl-phenyl)-pyridin-2-ylmethylene-amine (B), (2,4-dimethyl-phenyl)-pyridin-2-ylmethylene-amine (C) and (2,5-dimethyl-phenyl)-pyridin-2-ylmethylene-amine (D), and their corresponding copper(I) complexes, [Cu(A)2]ClO4 (1a), [Cu(B)2]ClO4 (1b), [Cu(C)2]ClO4 (1c), [Cu(D)2]ClO4 (1d), [Cu(A)(PPh3)2]ClO4 (2a), [Cu(B)(PPh3)2]ClO4 (2b), [Cu(C)(PPh3)2]ClO4 (2c) and [Cu(D)(PPh3)2]ClO4 (2d), have been synthesized and characterized by CHN analyses, 1H and 13C NMR, IR and UV–Vis spectroscopy. The crystal structures of [Cu(B)2]ClO4 (1b), [Cu(C)2]ClO4 (1c) and [Cu(A)(PPh3)2]ClO4 · 1/2CH3CN (2a) were determined from single crystal X-ray diffraction. The coordination polyhedron about the copper(I) center in the three complexes is best described as a distorted tetrahedron. A quasireversible redox behavior is observed for the complexes.  相似文献   

6.
The semirigid tridentate 8-(2-pyridinylmethylthio)quinoline ligand (Q1) is shown to form the structurally characterized transition metal complexes [Cu(Q1)Cl2] (1), [Co(Q1)(NO3)2] (2), [Cd(Q1)(NO3)2] (3), [Cd(Q1)I2] (4). [Cu(Q1)2](BF4)2·(H2O)2 (5), [Cu(Q1)2](ClO4)2·(CH3COCH3)2 (6), [Zn(Q1)2](ClO4)2(H2O)2 (7), [Cd2(Q1)2Br4] (8), [Ag2(Q1)2(ClO4)2] (9), and [Ag2(Q1)2(NO3)2] (10). Four types of structures have been observed: ML-type in complexes 14, in which the anions Cl, NO3 or I also participate in the coordination; ML2 type in complexes 57 without direct coordination of the anions BF4 or ClO4 and with more (Cu2+) or less (Zn2+) distorted bis-fac coordinated Q1; M2L2-type in complex 8, in which two Br ions act as bridges between two metal ions; and M2(μ-L)2-type in complexes 9 and 10, in which the ligand bridges two anion binding and Ag–Ag bonded ions. Depending on electron configuration and size, different coordination patterns are observed with the bonds from the metal ions to Npyridyl longer or shorter than those to Nquinoline. Typically Q1 acts as a facially coordinating tridentate chelate ligand except for the compounds 9 and 10 with low-coordinate silver(I). Except for 6 and 8, the complexes exhibit distinct constraining effects against both G(+) and G(-) bacteria. Complexes 1, 3, 4, 5, 7 have considerable antifungal activities and complexes 1, 5, 7, and 10 show selective effects to restrain certain botanic bacteria. Electrochemical studies show quasi-reversible reduction behavior for the copper(II) complexes 1, 5 and 6.  相似文献   

7.
A comparative investigation of the coordination behaviour of the 17-membered, N3O2-donor macrocycle, 1,12,15-triaza-3,4:9,10-dibenzo-5,8-dioxacycloheptadecane, L, with the soft metal ions Ag(I), Cd(II), Hg(II), and Pd(II) is reported. The X-ray structures of 12 complexes have been determined and a range of structural types, including both mononuclear and dinuclear species, shown to occur. In particular cases the effect of anion variation on the resulting structures has been investigated; L reacts with AgX (X = NO3, ClO4, PF6, OTf and CN) to yield related 2:2 (metal:ligand) complexes of types [Ag2L2(NO3)2] (1), [Ag2L2](ClO4)2 · 2DMF (2), [Ag2L2](PF6)2 · 2DMF (3), [Ag2L2](OTf)2 (4) and [Ag2L2(μ-CN)][Ag(CN)2] · H2O (5). In all five complexes the ether oxygens of each ring are unbound. In 1–4 the macrocycles are present in sandwich-like arrangements that shield the dinuclear silver centres, with each silver bonded to two nitrogen donors from one L and one nitrogen from a second L. A Ag···Ag contact is present between each metal centre such that both centres can be described as showing distorted tetrahedral geometries. In the case of 5 a rare single μ2-κC:κC symmetrically bridging two-electron-donating cyano bridge links silver ions [Ag···Ag distance, 2.7437(10) Å]; the macrocyclic ligands are orientated away from the dinuclear metal centres. In contrast to the behaviour of silver, reaction of cadmium(II) perchlorate with L resulted in a mononuclear sandwich-like complex of type [CdL2](ClO4)2 · CH3CN (6). Again, the ether oxygens do not coordinate, with each L binding to the cadmium centre only via its three nitrogen donors in a facial arrangement such that a distorted octahedral coordination geometry is attained. Reaction of L with HgX2 (X = ClO4, SCN and I) yielded the monomeric species [HgL(ClO4)2] (7), [HgL(SCN)2]·CH3CN (8) and [Hg2L2](HgI4)2 · 2L (9), in which all five donors of L are bound to the respective mercury centres. However, reaction of L with Hg(NO3)2 in dichloromethane/methanol gave a mononuclear sandwich-like complex [HgL2](NO3)2 · 2CH3OH (10) without anion coordination. Reaction of K2PdCl4 and Pd(NO3)2 with L yielded the 1:1 complexes [PdLCl]Cl · H2O (11) and [PdL(NO3)]NO3 · CH3OH (12), respectively, in which the metal is bound to three nitrogen donors from L along with the corresponding chloride or nitrate anion. Each palladium adopts a distorted square-planar coordination geometry; once again the ether oxygens are not coordinated.  相似文献   

8.
Four new complexes [Ni3(μ-L)6(H2O)6](NO3)6·6H2O (1), [Co3(μ-L)6(H2O)6](NO3)6·6H2O (2), [Ni3(μ-L)6(H2O)4(CH3OH)2](NO3)6·4H2O (3), [Co3(μ-L)6(H2O)4(CH3OH)2](NO3)6·4H2O (4) (L = 4-amino-3,5-dimethanyl-1,2,4-triazole) were synthesized and structurally characterized by X-ray single-crystal diffraction. The structural analyses show that complex 1 and 2 are isomorphous; complex 3 and 4 are isomorphous. Four complexes all consist of the linear trinuclear cations ([M3(μ-L)6(H2O)6]6+ (M = Ni,Co) for 1 and 2; [M3(μ-L)6(H2O)4(CH3OH)2]6+ (M = Ni,Co) for 3 and 4), NO3 anions and crystallized water molecules. In the trinuclear cations, the central M(II) ions and two terminal M(II) ions are bridged by three triazole ligands. Other eleven solid solution compounds which are isomorphous with complex 3 and 4 were obtained by using different ratio of Ni(II) and Co(II) ions as reactants and ICP result indicates that ligand L has higher selectivity of Ni(II) ions than that of Co(II) ions. The magnetic analysis was carried out by using the isotropic spin Hamiltonian ? = −2J(?1?2 + ?2?3) (for complexes 1 and 3) and simultaneously considering the temperature dependent g factor (for complexes 2 and 4). Both the UV-Vis spectra and the magnetic properties of the solid solutions can be altered systematically by adjusting the Co(II)/Ni(II) ratio.  相似文献   

9.
New [Ni(SCN)2(L)4/2] complexes, where L = py (1), γ-pic (2), pyCH2OH (3), py(CH2)3OH (4) were synthesized in simple reactions of NiCl2·6H2O with ammonia thiocyanate and pyridine type ligands in methanol solutions. Blue crystals of [Ni(SCN)2(py)4] (1), [Ni(SCN)2(pyCH2OH)2] (3) and [Ni(SCN)2(py(CH2)3OH)2] (4) crystallize in the monoclinic system, blue crystal of [Ni(SCN)2(γ-pic)4] (2) – in the tetragonal one, and red crystal of [Ni(SCN)2(PPh3)2] (5) – in the triclinic one. The ligands of complexes (1) and (3) were indicated as rather strong π-acceptors while that of complex (4) one has some π-donor properties. When the aliphatic chain (CH2) elongates in the sequence: (1), (3) and (4), an increase in the orbital contribution to the magnetic moment and a decrease in the 10Dq value of the d orbital splitting are related to the change of the point group symmetry from D2h, via D2v to C2h.  相似文献   

10.
The preparation, crystal structures and spectroscopic characterization of four oxalate copper(II) complexes containing the 4,4′-dimethyl-2,2′-bipyridine (Mebpy) or di(2-pyridyl)sulfide (DPS) nitrogen ligands namely [μ-(ox){Cu(Mebpy)(NO3)(H2O)}2] (1), [μ-(ox){Cu(Mebpy)(ClO4)(H2O)}2] (2), [μ-(ox){Cu(DPS)(H2O)}2](ClO4)2 (3) and [Cu(DPS)(ox)(H2O)] · 2H2O (4) are described. X-ray diffraction measurements have shown that complexes 13 are binuclear, in which the oxalate anion bridges two Cu(II) centers, while the complex (4) is mononuclear and the oxalate anion adopts the terminal bidentate chelating coordination mode. In 1 and 2 the Cu(II) sites display a distorted octahedral geometry (4+2 environment) and in compounds 3 and 4 the Cu(II) centers exhibit a slightly distorted square pyramidal geometry. In addition, complexes 1 and 2 present a 2D supramolecular arrangement through hydrogen bonds between coordination water molecules and nitrate or perchlorate anions and π-stacking interaction between the pyridyl rings of Mebpy nitrogen ligands.  相似文献   

11.
This paper describes the synthesis of the first Ni(II) complexes with pyridoxal semicarbazone (PLSC), viz. Ni(PLSC)Cl2 · 3.5H2O (1), [Ni(PLSC)(H2O)3](NO3)2 (2), Ni(PLSC)(NCS)2 · 4H2O (3), [Ni(PLSC-2H)NH3] · 1.5H2O (4), as well as two new complexes with pyridoxal thiosemicarbazone (PLTSC), [Ni(PLTSC-H)py]NO3 (5) and [Ni(PLTSC-H)NCS] (6). Complexes 13 are paramagnetic and have most probably an octahedral structure, for complex 2 this was proved by X-ray diffraction analysis. In contrast, complexes 46 are diamagnetic and have a square-planar structure, and in the case of complex 5 this was also confirmed by X-ray structural analysis. In all cases the Schiff bases are coordinated as tridentate ligands with an ONX (X = O, PLSC; X = S, PLTSC) set of donor atoms. With the complexes involving the neutral form of PLSC and the monoanionic form of PLTSC, the PL moiety is in the form of a zwitterion. In addition to the above-mentioned techniques, all the complexes were characterized by measuring their molar conductivities, UV–Vis and partial IR spectra.  相似文献   

12.
The reaction between 3-hydroxy-5-hydroxymethyl-2-methyl-4-pyridinecarboxaldehyde semicarbazone (pyridoxal-semicarbazone or PLSC) and appropriate chloride, sulfate, nitrate or thiocyanate Cu(II) salts in water/alcohol mixtures resulted in the formation of new copper(II) complexes: [Cu(PLSC)Cl2] (1), [Cu(PLSC)(H2O)(SO4)]2·3H2O (2), [Cu2(PLSC)2(NCS)2](NCS)2 (3), [Cu(PLSC)(NO3)2(CH3OH)] (4) and [Cu(PLSC-2H]NH3·H2O (5). The complexes were characterized by elemental analysis, conductometric measurements and IR spectroscopy, while complexes 1, 2, 3 and 4 were further characterized by single crystal X-ray diffraction.  相似文献   

13.
Three Cd(II) macroacyclic Schiff base complexes [CdL4(NO3)2] (4), [CdL5(NO3)2] (5), [CdL6(NO3)2] (6) were prepared by template condensation of 2-pyridinecarboxaldehyde with N1-(2-nitrobenzyl)-N1-(2-aminoethyl)ethane-1,2-diamine (L1), N1-(2-nitrobenzyl)-N1-(2-aminoethyl)propane-1,3-diamine (L2) or N1-(2-nitrobenzyl)-N1-(3-aminopropyl)propane-1,3-diamine (L3), in the presence of cadmium metal ion, respectively. Three Cd(II) complexes with L1, L2 and L3 were also synthesized. All complexes have been studied with IR, 1H NMR, 13C NMR, DEPT, COSY, HMQC and microanalysis. Two of these complexes, [CdL4(NO3)2] (4) and [CdL1(NO3)2] (1) have been characterized through X-ray crystallography. In complex 4, the Cd is in a six-coordinate environment comprised of the ligand N4-donor set and two oxygen atoms of two nitrate groups. In the polyamine complexes (1, 2 and 3) Cd and ligand are in a ratio of 1:1. Supporting ab initio HF-MO calculations have been undertaken using the standard 3-21G and 6-31G basis sets.  相似文献   

14.
15.
16.
Interaction of copper(II) salts with 2,2′-dipyridylamine (1), N-cyclohexylmethyl-2,2′-dipyridylamine (2), di-2-pyridylaminomethylbenzene (3), 1,2-bis(di-2-pyridylaminomethyl)-benzene (4), 1,3-bis(di-2-pyridylaminomethyl)benzene (5), 1,4-bis(di-2-pyridylaminomethyl)benzene (6), 1,3,5-tris(di-2-pyridylaminomethyl)benzene (7) and 1,2,4,5-tetrakis(di-2-pyridylaminomethyl)benzene (8) has yielded the following complexes: [Cu(2)(μ-Cl)Cl]2, [Cu(3)(μ-Cl)Cl]2 · H2O, [Cu2(4)(NO3)4], [Cu2(5)(NO3)4] · 2CH3OH, [Cu2(6)(CH3OH)2(NO3)4], [Cu4(8)](NO3)4] · 4H2O while complexation of palladium(II) with 1, 4, 5 and 6 gave [Pd(1)2](PF6)2 · 2CH3OH, [Pd2(4)Cl4], [Pd2(4)(OAc)4], [Pd2(5)Cl4], [Pd2(6)Cl4] and [Pd2(6)(OAc)4] · CH2Cl2, respectively. X-ray structures of [Cu(2)(μ-Cl)Cl]2, [Cu(3)(μ-Cl)Cl]2 · 2C2H5OH, [Cu2(6)(CH3OH)2(NO3)4], [Pd(1)2](PF6)2 · 2CH3OH, [Pd2(4)(OAc)4] · 4H2O and [Pd2(6)(OAc)4] · 2CH2Cl2 are reported. In part, the inherent flexibility of the respective ligands has resulted in the adoption of a diverse range of coordination geometries and lattice arrangements, with the structures of [Pd2(4)(OAc)4· 4H2O and [Pd2(6)(OAc)4] · 2CH2Cl2, incorporating the isomeric ligands 4 and 6, showing some common features. Liquid–liquid (H2O/CHCl3) extraction experiments involving copper(II) and 13, 5, 7and 8 show that the degree of extraction depends markedly on the number of dpa-subunits (and concomitant lipophilicity) of the ligand employed with the tetrakis-dpa derivative 8 acting as the most efficient extractant of the six ligand systems investigated.  相似文献   

17.
The extended structures of Ag-complexes of the azine based ligands phenyl-2-pyridyl ketone azine (L1) and di-2-pyridyl ketone azine (L2) are reported, and focus is made on the investigation of the influence of the anion and supramolecular interactions on the self-assembly. Using AgNO3, AgClO4 and CF3COOAg salts as starting materials for both ligands in acetonitrile, we observed the formation of the dinuclear complexes [Ag2(L1)2](NO3)2 (1a), [Ag2(L1)2](ClO4)2 (1b), from L1, the tetranuclear complexes [Ag4(L2)2 (NO3)(CH3CN)2](NO3)3 (2a), [Ag4(L2)2(CF3COO)3CH3CN](CF3COO) (2b) and the linear chain polynuclear complex {[Ag3(L2)2] (ClO4)3}n (3) from L2. The X-ray structures show that the molecular geometry depends on the choice of anion. The silver centers have distorted tetrahedral coordination geometry in all the complexes. Weak hydrogen bonding and other interactions result in 2-D and 3-D networks in these complexes.  相似文献   

18.
Ten copper(II) complexes {[CuL1Cl] (1), [CuL1NO3]2 (2), [CuL1N3]2 · 2/3H2O (3), [CuL1]2(ClO4)2 · 2H2O (4), [CuL2Cl]2 (5), [CuL2N3] (6), [Cu(HL2)SO4]2 · 4H2O (7), [Cu(HL2)2] (ClO4)2 · 1/2EtOH (8), [CuL3Cl]2 (9), [CuL3NCS] · 1/2H2O (10)} of three NNS donor thiosemicarbazone ligands {pyridine-2-carbaldehyde-N(4)-p-methoxyphenyl thiosemicarbazone [HL1], pyridine-2-carbaldehyde-N(4)-2-phenethyl thiosemicarbazone [HL2] and pyridine-2-carbaldehyde N(4)-(methyl), N(4)-(phenyl) thiosemicarbazone [HL3]} were synthesized and physico-chemically characterized. The crystal structure of compound 9 has been determined by X-ray diffraction studies and is found that the dimer consists of two square pyramidal Cu(II) centers linked by two chlorine atoms.  相似文献   

19.
A versatile neutral metalloligand [Cu(PySal)2] (1) (PySal = 3-pyridylmethylsalicylidene-imino) was exploited as a building unit to construct five complexes {Cu[Cu(PySal)2]2}(ClO4)2 (2), {Cd[Cu(PySal)2]2(H2O)2]} (NO3)2 · 2H2O · 4CH3OH (3), {Zn[μ2-Cu(PySal)2]Cl2}n · nCH3OH (4), {Hg[μ2-Cu(PySal)2]I2}n (5) and {Cd[μ2-Cu(PySal)2]Cl2}n · nCH2Cl2 (6). [Cu(PySal)2] acts as a chelating ligand in discrete complexes 2 and 3 with unbound anions, but as a bis-monodentate bridging ligand in polymers 4, 5 and 6 when halogen anions coordinated cooperatively to metal cations. The coordination geometry of Cu2+ is well-defined square planar in bridging [Cu(PySal)2], analogous to that in free metalloligand (1), but it is distorted square planar in chelating [Cu(PySal)2].  相似文献   

20.
Nickel(II) complexes of quinoline-2-carbaldehyde N(4),N(4)-(butane-1,4-diyl) thiosemicarbazone (HL1) and 2-benzoylpyridine N(4),N(4)-(butane-1,4-diyl) thiosemicarbazone (HL2) have been synthesized and physico-chemically characterized by means of partial elemental analyses, molar conductance measurements, magnetic measurements, electronic and infrared spectral studies. Three complexes were given the formulae [Ni(HL1)2]Cl2 (1), [Ni(HL2)L2]ClO4 · 7H2O (2) and [NiL2Cl] · 0.5H2O (3). The structure of compound 1 has been solved by single crystal X-ray crystallography and is found to be distorted octahedral. Compound 2, when crystallized in DMSO solution, got deprotonated to form a new compound [Ni(L2)2] (2a), with a distorted octahedral Ni(II) center. In compound 1, HL1 coordinates to the metal in the thione form, while in compounds 2a and 3, HL2 coordinates in its deprotonated thiolate form.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号