首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
The transient convective burning of n-octane droplets interacting within single-layer arrays in a hot gas flow perpendicular to the layer is studied numerically, with considerations of droplet surface regression, deceleration due to the drag of the droplets, internal liquid motion, variable properties, non-uniform liquid temperature and surface tension. Infinite periodic arrays, semi-infinite periodic arrays with one row of droplets (linear array) or two rows of droplets, and finite arrays with nine droplets with centers in a plane are investigated. All arrays are aligned orthogonal to the free stream direction. This paper compares the behavior of semi-infinite periodic arrays and finite arrays with the behavior of previously studied infinite periodic arrays. Furthermore, it identifies the critical values of the initial Damköhler number for bifurcations in flame behavior at various initial droplet spacing for all these arrays. The initial flame shape is either an envelope flame or a wake flame as determined by the initial Damköhler number, the array configuration and the initial droplet spacing. The critical initial Damköhler number separating initial wake flames from initial envelope flames decreases with increasing interaction amongst droplets at intermediate droplet spacing (when the number of rows in the array increases or the initial droplet spacing decreases for a specific number of rows in the array). In the transient process, an initial wake flame has a tendency to develop from a wake flame to an envelope flame, with the moment of wake-to-envelope transition advanced for the increasing interaction amongst droplets at intermediate droplet spacing. For the array with nine droplets with centers in a plane, the droplets at different types of positions have different critical initial Damköhler number and different wake-to-envelope transition time for initial wake flame.  相似文献   

2.
Gas turbines, liquid rocket motors, and oil-fired furnaces utilize the spray combustion of continuously injected liquid fuels. In most cases, the liquid spray is mixed with an oxidizer prior to combustion, and further oxidizer is supplied from the outside of the spray to complete diffusion combustion. This rich premixed spray is called “partially premixed spray.” Partially premixed sprays have not been studied systematically although they are of practical importance. In the present study, the burning behavior of partially premixed sprays was experimentally studied with a newly developed spray burner. A fuel spray and an oxidizer, diluted with nitrogen, was injected into the air. The overall equivalence ratio of the spray jet was set larger than unity to establish partially premixed spray combustion. In the present burner, the mean droplet diameter of the atomized liquid fuel could be varied without varying the overall equivalence ratio of the spray jet. Two combustion modes with and without an internal flame were observed. As the mean droplet diameter was increased or the overall equivalence ratio of the spray jet was decreased, the transition from spray combustion only with an external group flame to that with the internal premixed flame occurred. The results suggest that the internal flame was supported by flammable mixture through the vaporization of fine droplets, and the passage of droplet clusters deformed the internal flame and caused internal flame oscillation. The existence of the internal premixed flame enhanced the vaporization of droplets in the post-premixed-flame zone within the external diffusion flame.  相似文献   

3.
Combustion experiments of fuel droplet array in fuel vapor-air mixture were performed at microgravities to investigate growth mechanism of group combustion of fuel droplets. A 10-droplet array was inserted into the test section filled with a saturated fuel vapor-air mixture as a simple model of prevaporized sprays. Gas equivalence ratio of the fuel vapor-air mixture was regulated by the test section temperature. n-Decane droplets of 0.8 mm in the initial diameter were suspended at the crossing points of 10 sets of X-shaped suspenders. The first droplet was ignited by a hot wire to initiate flame spread along a fuel droplet array. Flame spread speed was obtained from the history of the leading edge position of a spreading flame. Effects of droplet spacing and gas equivalence ratio on the flame spreading behavior and the flame spread speed were examined. The droplet spacing and the gas equivalence ratio were varied from 1.6 to 10.2 mm and from 0.2 to 0.7, respectively. The gas equivalence ratio has little effect on the relationship between the flame spreading behavior and the droplet spacing. The flame spread speed increases as the increase in the gas equivalence ratio at all droplet spacings. The influence of the gas equivalence ratio on the flame spread speed becomes strong as the increase in the droplet spacings. The flame spread speed increases as the increase in the droplet spacing, and then decreases. The maximum flame spread speed appears in the range from 2.4 to 3 mm at all gas equivalence ratios.  相似文献   

4.
The transient convective burning of fuel-droplets interacting within 3-D infinite periodic arrays in a hot gas stream is numerically studied for the first time, with considerations of droplet regression, deceleration due to the drag of the droplets, internal liquid motion, variable properties, non-uniform liquid temperature, surface tension, and n-octane one-step oxidation kinetics. Depending upon the initial conditions and other constraints, a flame is established early as either a wake flame or an envelope flame. An initial envelope flame remains an envelope flame, and an initial wake flame has a tendency to develop from a wake flame to an envelope flame. The flame shows no strong tendency to modify significantly the standoff distance during the lifetime of the droplet. For an initial wake flame, the moment of wake-to-envelope transition is advanced as the initial droplet spacing (intermediate) is decreased, but tends to be postponed as the initial droplet spacing is further reduced. The burning rate at smaller initial droplet spacing or smaller initial Reynolds number might be greater for some period during the lifetime because of an earlier wake-to-envelope transition which elevates the average surface temperature. Lower ambient temperature yields a later wake-to-envelope transition time and smaller mass burning rate. At the lower ambient pressure with the same initial relative stream velocity, the average surface temperature is reduced, the wake-to-envelope transition is later, and the mass burning rate is smaller. Validation of our analysis is made by comparing with the results of an isolated droplet Wu and Sirignano [11].  相似文献   

5.
The combustion of premixed gas mixtures containing micro droplets of water was studied using one-dimensional approximation. The dependencies of the burning velocity and flammability limits on the initial conditions and on the properties of liquid droplets were analyzed. Effects of droplet size and concentration of added liquid were studied. It was demonstrated that the droplets with smaller diameters are more effective in reducing the flame velocity. For droplets vaporizing in the reaction zone, the burning velocity is independent of droplet size, and it depends only on the concentration of added liquid. With further increase of the droplet diameter the droplets are passing through the reaction zone with completion of vaporization in the combustion products. It was demonstrated that for droplets above a certain size there are two stable stationary modes of flame propagation with transition of hysteresis type. The critical conditions of the transition are due to the appearance of the temperature maximum at the flame front and the temperature gradient with heat losses from the reaction zone to the products, as a result of droplet vaporization passing through the reaction zone. The critical conditions are similar to the critical conditions of the classical flammability limits of flame with the thermal mechanism of flame propagation. The maximum decrease in the burning velocity and decrease in the combustion temperature at the critical turning point corresponds to predictions of the classical theories of flammability limits of Zel'dovich and Spalding. The stability analysis of stationary modes of flame propagation in the presence of water mist showed the lack of oscillatory processes in the frames of the assumed model.  相似文献   

6.
Flame spread on a fuel droplet array has been studied as a simple model of spray combustion. A three-fuel-droplet array with a pendulum suspender was employed to investigate interactions between flame spread and droplet motion in the axial direction. Initial droplet diameter was 0.8 mm, and fuel was n-heptane. A silicon carbide pendulum suspender of 15 μm in diameter and 30 mm in length was used for the third droplet. The first fixed droplet was ignited by electric spark. Behavior of the flame and the third droplet was observed using a high-speed video camera with an image intensifier. Particle tracking velocimetry (PTV) measurements were performed to explain the behavior of the third movable droplet. The dimensionless droplet span, which is the average of droplet-to-droplet distances divided by the average initial diameter of the three droplets, was varied from 2.5 to 8 for observing flame spread, and fixed at 5.5 for PTV measurements. It was observed that the third droplet moved away from the second droplet before the flame spread to the third droplet. The displacement of the third droplet is remarkable when the dimensionless droplet span is close to the limit of flame spread. This implies that the movement of the droplet decreases the dimensionless span of the flame spread limit and the flame spread speed near the flame spread limit. Results of PTV measurements suggest that the heat expansion wave, caused by ignition of the premixture which was accumulated around the second droplet, and the burned gas flow from the second droplet pushed away the third droplet; then natural convection, induced by the flames of the first and second droplets, drew the third droplet to the second droplet. The heat expansion wave and the burned gas flow of the second droplet reached nearly 12 in dimensionless span.  相似文献   

7.
Flame spreading along a fuel droplet array at microgravity has been studied as a simple model of spray combustion. A three droplet array with a pendulum suspender was employed to investigate interactions between flame spreading and droplet motion in the array direction. Initial droplet diameter was 0.8 mm and fuel was n-heptane. A silicon carbide pendulum suspender of 15 μm in diameter and 30 mm in length was used for the third droplet. The first fixed droplet was ignited by electric spark. Behavior of the flame and the third droplet was observed using a high-speed video camera. Dimensionless span, which is the averaged droplet span divided by the averaged initial diameter of the three droplets, was varied from 2.7 to 10. Large displacement of the movable droplet was observed after group flame grew around the movable droplet. As the initial dimensionless span increased, the averaged droplet speed after the occurrence of flame spreading to the movable droplet increased steeply, taking the maximum value around 5 in initial dimensionless span, and then decreased gradually. The movable droplet advanced toward the second droplet in small spans and moved away from the second droplet in large spans. The direction of the motion changed around 4.6 in initial dimensionless span. Flame spread induction time from the second to the third droplet increased exponentially as the initial dimensionless span was increased. The induction time of flame spreading to a movable droplet was longer than that of flame spreading to a fixed droplet. From calculations of flame spreading along a 20-droplet array, it was predicted that the droplet speed nearly converged after flame spread to the sixteenth droplet. The maximum speed of the nineteenth droplet appeared around 7.5 in the initial dimensionless span.  相似文献   

8.
This research conducted microgravity experiments to investigate phenomena appearing around a droplet existing outside the flame-spread limit. n-Decane droplets are tethered at intersections of SiC fibers. The flame spreads to two- or three-interactive droplets to heat a droplet placed outside the flame-spread limit of the interactive droplets. The cool-flame appearance during the flame spread over droplets was detected using different methods. The droplet diameter was measured with a back illumination to evaluate the vaporization-rate constant and to judge whether the cool flame appears or not. The temperature around the droplet was measured by the thin-filament pyrometry using a near-infrared camera to detect the temperature rise due to cool-flame appearance. The infrared radiation distribution from the combustion products was measured using a mid-wave infrared camera to judge the cool-flame appearance. The results show that a cool flame appears around the droplet existing outside the hot-flame-spread limit and the vaporization completes with the cool flame if the heat input from the hot flame is sufficiently large. This type of flame spread is called hot-to-cool flame spread. The definition of flame spread should be extended considering the cool flame.  相似文献   

9.
An experimental study was performed on the combustion of lean-premixed spays in a counterflow. n-Decane was used as a liquid fuel with low volatility. The flame structure and stabilization were discussed based on the flame-spread mechanism of a droplet array with a low-volatility fuel. The spray flame consisted of a blue region and a yellow luminous region. The flame spread among droplets and group-flame formation through the droplet interaction were observed on the premixed spray side, while envelope flames were also observed on the opposing airflow side. The blue-flame region consisted of premixed flames propagating in the mixture layer around each droplet, the envelope diffusion flames around each droplet, the lower parts of the group diffusion flame surrounding each droplet cluster, and the envelope flame around droplets passing through the group flame. The flame was stabilized within a specific range of the mean droplet diameter via a balance between the droplet velocity and the flame-spread rate of the premixed spray.  相似文献   

10.
Laser-induced fluorescence was used to visualize acetone fields inside individual droplets of pure acetone as well as droplets composed of methanol or 1-propanol initially mixed with acetone. Droplets were supported on a horizontal wire and two vaporization conditions were investigated: (1) slow evaporation in room air and (2) droplet combustion, which leads to substantially faster droplet surface regression rates. Acetone was preferentially gasified, causing its concentration in droplets to drop in time with resultant decreases in acetone fluorescence intensities. Slowly vaporizing droplets did not exhibit large spatial variations of fluorescence within droplets, indicating that these droplets were relatively well mixed. Ignition of droplets led to significant variations in fluorescence intensities within droplets, indicating that these droplets were not well mixed. Ignited droplets composed of mixtures of 1-propanol and acetone showed large time-varying changes in shapes for higher acetone concentrations, suggesting that bubble formation was occurring in these droplets.  相似文献   

11.
Autoignition and early flame behavior of a spherical cluster of 49 monodispersed droplets in a high-temperature air were examined in microgravity. The monodispersed suspended-droplet cluster (MSDC) model with which both droplet spacing and initial droplet diameter were well-controlled was developed, and the solidified-fuel fiber-suspension technique was utilized for making the MSDC model. The tested 3D MSDC models had the HCP (hexagonal closest packing) structure. Individual flames, which enveloped each droplet, or group flame, which enveloped the whole droplet cluster, were formed immediately after ignition. The flame changed from the group flame to a cluster of the individual flames either with increasing the droplet spacing or decreasing the initial droplet diameter. Each of the individual flames merged into the group flame with the lapse of time. Burning sphere diameter decreased at the beginning, and then increased. The transition from the individual flames to the group flame occurred around the time period at which the burning sphere diameter reached its minimum. The time period at which the burning sphere diameter reached its maximum was delayed and the expansion rate of the burning sphere was enhanced with decreasing the droplet spacing or with increasing the initial droplet diameter.  相似文献   

12.
A partially prevaporized spray burner was developed to investigate the interaction between fuel droplets and a flame. Monodispersed partially prevaporized ethanol sprays with narrow diameter distribution were generated by the condensation method using rapid pressure reduction of a saturated ethanol vapor–air mixture. A tilted flat flame was stabilized at the nozzle exit using a hot wire. Particle tracking velocimetry (PTV) was applied to measurements of the droplet velocity; the laminar burning velocity was obtained from gas velocity derived from the droplet velocity. Observations were made of flames in partially prevaporized spray streams with mean droplet diameters of 7 μm and the liquid equivalence ratios of 0.2; the total equivalence ratio was varied. In all cases, a sharp vaporization plane was observed in front of the blue flame. Flame oscillation was observed on the fuel-rich side. At strain rates under 50 s−1, the change in the burning velocity with the strain rate is small in fuel-lean spray streams. In spray streams of 0.7 and 0.8 in the total equivalence ratio, burning velocity increases with strain rates of greater than 50 s−1. However, in spray streams with 0.9 and 1.0 in the total equivalence ratio, burning velocity decreases as the strain rate increases. At strain rates greater than 80 s−1, burning velocity decreases with an increased gas equivalence ratio. The effect of mean droplet diameter, and the entry length of droplets into a flame on the laminar burning velocity, were also investigated to interpret the effect of the strain rate on the laminar burning velocity of partially prevaporized sprays.  相似文献   

13.
Direct numerical simulation of diluted combustion by evaporating droplets   总被引:1,自引:0,他引:1  
Diluted combustion has been studied using DNS in a three-dimensional temporally developing reacting shear-layer with the oxidizer stream laden with evaporating droplets. The gaseous phase is described in the Eulerian frame while the discrete droplet phase is treated in the Lagrangian frame, with strong two-way coupling between the two phases through mass, momentum and energy exchange. Grid-resolution-independent results have been obtained in cases without and with droplets. A comprehensive parametric study has been conducted by varying the initial Stokes number (St0) and mass loading ratio (MLR0). Detailed field analysis has been conducted to examine the complex nonlinear interactions among droplet dynamics, evaporation, turbulence and combustion, and so on. Effects of evaporating droplets on averaged flow and combustion quantities have also been presented. In particular, the conditional scalar dissipation rate is found to be enhanced by evaporating droplets, which suggests that they can promote micromixing and combustion under certain conditions, in addition to their roles in combustion suppression. The transport equation for the mixture fraction variance has been analyzed, with a focus on the vaporization-related source terms. Such source terms exhibit more complex local variations in the present shear-flow non-premixed flame configuration, compared with the case in the homogeneous decaying turbulence configuration of Réveillon and Vervisch (2000).  相似文献   

14.
This paper examines the vaporization of individual dodecafluoropentane droplets by the application of single ultrasonic tone bursts. High speed video microscopy was used to monitor droplets in a flow tube, while a focused, single element transducer operating at 3, 4, or 10 MHz was aimed at the intersection of the acoustical and optical beams. A highly dilute droplet emulsion was injected, and individual droplets were positioned in the two foci. Phase transitions of droplets were produced by rarefactional pressures as low as 4 MPa at 3 MHz using single, 3.25 micros tone bursts. During acoustic irradiation, droplets showed dipole-type oscillations along the acoustic axis (average amplitude 1.3 microm, independent of droplet diameter which ranged from 5 to 27 microm). The onset of vaporization was monitored as either spot-like, within the droplet, or homogeneous, throughout the droplet's imaged cross section. Spot-like centers of nucleation were observed solely along the axis lying parallel to the direction of oscillation and centered on the droplet. Smaller droplets required more acoustic intensity for vaporization than larger droplets, which is consistent with other experiments on emulsions.  相似文献   

15.
Experimental investigation of an isolated droplet burning in a convective flow is reported. Acetone droplets were injected in a steady laminar diffusion counterflow flame operating with methane. Planar laser-induced fluorescence measurements applied to OH radical and acetone was used to measure the spatial distribution of fuel vapour and the structure of the flame front around the droplet. High-magnification optics was used in order to image flow areas with a ratio of 1:1.2. The different combustion regimes of an isolated droplet could be observed from the configuration of the envelope flame to that of the boundary-layer flame, and occurrence of these regimes was found to depend on the droplet Reynolds number. Experimental results were compared with 1D numerical simulations using detailed chemistry for the configuration of the envelope flame. Good agreement was obtained for the radial profile of both OH radical and fuel vapour. Influence of droplet dynamics on the counterflow flame front was also investigated. Results show that the flame front could be strongly distorted by the droplet crossing. In particular, droplets with high velocity led to local extinction of the flame front whereas droplets with low velocity could ignite within the flame front and burn on the oxidiser side. PACS 33.50.-j; 42.62.-b; 47.55.D-; 47.70.Pq; 47.80.Jk  相似文献   

16.
The phenomenon of droplet clustering or grouping found when a spray of droplets is moving in an oscillating host flow field is investigated for the case of a polydisperse spray that fuels a laminar co-flow diffusion flame. A mathematical solution is developed for the liquid phase based on use of small Stokes numbers for size sections into which the polydisperse spray size distribution is divided. Droplet clustering in the oscillatory flow field is accounted for by constructing a special model for the sectional vaporization Damkohler numbers in accordance with droplet size. Combining this with a formal solution for a gas phase Schvab-Zel'dovich variable yields the means whereby flame dynamics can be described. Results calculated from this solution demonstrate that preferential droplet size behaviour (with smaller droplets tending to cluster to a greater extent and reduce the vaporization Damkohler number more than larger ones) can have a major impact on the flame dynamics through local droplet enrichment with attendant consequences on the production of fuel vapour. The dynamics of the sort of flame (over- or under-ventilated) and the occurrence of flame pinching leading to multiple flame sheets are altered under these circumstances. However, potential control of the actual initial spray polydispersity may reduce the intensity of such effects.  相似文献   

17.
何博  丰松江  聂万胜 《计算物理》2013,30(2):194-202
考虑气相非稳态及液滴内部环流,建立运动液滴非稳态蒸发燃烧模型.模型采用动网格方法精确追踪液滴表面位置,采用守恒方程组更新液滴表面边界条件.根据单步全局化学反应机理,仿真研究正庚烷燃料液滴在不同对流速度下的火焰形态及燃烧.结果表明:运动液滴内部环流使液滴内部低温区向环流中心移动.当液滴运动速度大于某临界值后,火焰形态由包覆火焰转变为尾迹火焰.包覆火焰的富燃区范围、高温区范围及燃烧速率明显较尾迹火焰大;包覆火焰的液滴表面温度及表面蒸发流率分布也明显不同于尾迹火焰.  相似文献   

18.
The development of liquid fuelled microcombustors faces many challenges, one of which being high asymmetric heat flux across the combustion chamber. Typically, thin walls provide little resistance to convective heat transfer and therefore, allowing high heat loss rates. Insulating the walls results in high wall temperatures, which increases the likelihood that radiation plays an important role. Both of these effects have the potential to induce asymmetries and strong temperature gradients in the gas flow, relative to the more uniform environment of a conventional combustor. This investigation uses planar laser-induced fluorescence (PLIF) to reveal the spatial vapor distribution around a monodisperse acetone droplet stream that is exposed to asymmetric radiant heating. Droplets with diameters from 117 to 222 μm flow past a single-sided array of radiant heating elements to provide the asymmetric heating. A frequency-quadrupled Nd:YAG laser provides a 266 nm light sheet to excite the acetone vapor around the droplets, which are exposed to different experimental conditions by varying parameters such as the droplet diameter and temperature of the radiating elements for a fixed exposure time of the droplets in the heated region. A CCD camera captures the fluorescence of the excited acetone vapor molecules over a broadband wavelength range between 350 and 550 nm, to give the radial and axial vapor concentration around each droplet. After processing the PLIF images, we obtain contour plots of the spatial acetone vapor concentration around the droplets which depict asymmetric vapor distribution. The potential impacts on vaporization, combustion and pollutant formation are discussed.  相似文献   

19.
An analytical model based on an assumption of combined quasi-steady and transient behavior of the process is presented to exemplify the unsteady, sphero-symmetric single droplet combustion under microgravity. The model used in the present study includes an alternative approach of describing the droplet combustion as a process where the diffusion of fuel vapor residing inside the region between the droplet surface and the flame interface experiences quasi-steadiness while the diffusion of oxidizer inside the region between the flame interface and the ambient surrounding experiences unsteadiness. The modeling approach especially focuses on predicting; the variations of droplet and flame diameters with burning time, the effect of vaporization enthalpy on burning behavior, the average burning rates and the effect of change in ambient oxygen concentration on flame structure. The modeling results are compared with a wide range of experimental data available in the literature. It is shown that this simplified quasi-steady transient approach towards droplet combustion yields behavior similar to the classical droplet theory.  相似文献   

20.
喷雾蒸发燃烧的研究对指导发动机燃烧系统设计具有重要意义。本文搭建了高速数字全息系统,在线测量乙醇喷雾火焰中液滴的粒径、三维位置、速度及蒸发率。对喷雾火焰中的液滴进行了统计分析,得到液滴粒径及三维空间分布。燃烧喷雾场液滴的平均粒径为68μm;非燃烧火焰测试区液滴数量多且较密集,燃烧火焰测试区液滴数量少且稀疏.追踪单液滴并处理得到湍流火焰中液滴的运动轨迹及速度。通过研究粒径的平方D2随停留时间ts的变化,测得液滴平均蒸发率为-3.343×10-7 m2/s.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号