首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The adsorption of lead(II) and copper(II) on an activated carbon (Filtrasorb 300, Chemviron) was characterized assuming that it takes place by formation of complexes with functional groups, present in the activated carbon. Their concentration and conditional adsorption coefficients were determined for each metal by titration of the carbon in suspension in aqueous phase, at constant acidity, with the metal itself. For each titration point, the concentration of the metal in the solution phase after equilibration was determined, and the data were processed by the Ruzic linearization method, to obtain the concentration of the active sites involved in the sorption, and the conditional constant. The effect of the pH was also examined, in the range 4-6, obtaining that the adsorption increases at increasing pH. The protonation and adsorption constants were determined from the conditional adsorption coefficients obtained at the different acidities. The concentration of the active sites is 0.023 and 0.042 mmol g−1, and the protonation constants are 1.0×106 and 4.6×104 M−1 for Pb(II) and Cu(II). The corresponding adsorption constants are respectively 1.4×105 and 6.3×103 M−1. All the parameters are affected by a large uncertainty, probably due to the heterogeneity of the active groups in the activated carbon. Even if so, these parameters make it possible a good prediction of the adsorption in a wide range of conditions. Other sorption mechanism can be set up at different conditions, in particular at different pH, as it has been demonstrated in the case of copper(II).  相似文献   

2.
Two series of activated carbons have been prepared from date pits; series C, using carbon dioxide as activating agent, and series S, prepared by activation with steam under the same experimental conditions. The obtained samples were oxidized with nitric acid in order to introduce more oxygen surface groups. The surface area and porosity of the parent and oxidized activated carbons were studied by N2 adsorption at 77 K and CO2 adsorption at 273 K. The oxygen surface complexes were characterized by temperature-programmed decomposition (TPD). The results show that carbon dioxide and steam activations produce microporous carbons with an increasing amount of CO evolving groups when increasing the burn-off. On the other hand, oxidation with nitric acid increases the amount of CO and CO2 evolved by the decomposition of surface oxygen groups, this increase being related to the development of porosity in the carbon with the degree of activation and to the activating agent used (CO2 versus steam).  相似文献   

3.
In this study, simultaneous adsorption of copper ions and humic acid (HA) from Aldrich onto an activated carbon is investigated. It is found that the HA adsorption in the absence of copper decreases as the pH is increased. It leads to a reduction of 34.7% in the specific surface area of carbon. There exists a critical concentration (CC) of HA for copper adsorption. At HA concentrations < CC, a decrease in copper adsorption is observed; however, the HA improves the adsorption at HA concentrations > CC. An increase in ionic strength can enhance the copper uptake; however, zinc and/or cobalt ions have an insignificant influence on copper adsorption. The adsorption is significantly increased by citric acid, whereas addition of EDTA slightly decreases the uptake. An intraparticle diffusion model is successfully used to describe the copper adsorption kinetics.  相似文献   

4.
Adsorption of methyl mercaptan on surface modified activated carbon   总被引:2,自引:0,他引:2  
The influence of surface modification of activated carbon on the adsorption of methyl mercaptan in N(2) was investigated. The modification of the activated carbon was carried out by treatment with HNO(3)/H(2)SO(4) solutions, heat-treatment in Ar, and adsorption of cetylamine. Acid-treatment increased the adsorption of methyl mercaptan compared with the original activated carbon, and the adsorbed amounts increased with ratio of H(2)SO(4) in HNO(3)/H(2)SO(4) solutions. This result suggests that hydrogen bonding between acidic groups formed by acid-treatment and thiol groups of methyl mercaptan plays a role in adsorption of methyl mercaptan on activated carbon.  相似文献   

5.
The adsorption isotherms of Cu(II) ions from aqueous solutions in the concentration range 40–1000 mg l−1 on two samples of granulated and two samples of activated carbon fibres containing varying amounts of associated oxygen have been reported. The adsorption isotherms are type I of BET classification showing initially a rapid adsorption tending to be asymptotic at higher concentrations. The amounts of oxygen associated with the carbon surface has been enhanced by oxidation with nitric acid and ammonium persulphate in the solution phase and with oxygen gas at 350°C and decreased by degassing of the oxidized carbon samples at 400, 650 and 950°C. The adsorption of Cu(II) ions increases on oxidation and decreases on degassing. The increase in adsorption on oxidation depends on the nature of the oxidative treatment while the decrease in adsorption on degassing depends on the temperature of degassing. This has been attributed to the increase in the carbon–oxygen acidic surface groups on oxidation and their decrease on degassing. Suitable mechanisms consistent with the results have been proposed.  相似文献   

6.
Summary Adsorption properties of activated carbon cloth were investigated by gas-solid chromatography. Retention of several organic compounds was measured in the temperature range from 200 to 250°C. The gas/solid distribution coefficients and the related thermodynamic function of adsorption at zero surface coverage were determined. The obtained experimental data were used to explain the adsorbent-adsorbate interaction.  相似文献   

7.
Different authors investigated the effects of geometric and energetic heterogeneities on adsorption and on carbon characterization methods. In most theoretical studies carbon structure is modeled as parallel infinite graphite walls that form ideal slit-shaped pores of the fixed widths. In the literature there is the lack of systematic studies showing the influence of pore structural and Lennard-Jones (LJ) potential parameters on the pore-size distribution functions. Moreover, the parameters characterizing the properties of the adsorbed phase and the heterogeneity of the adsorbent surface should be taken into account. The Nguyen and Do method with proposed by us ASA algorithm, were utilized for the assessment of the porosity from the series of almost few thousands numerically generated local adsorption isotherms. The values of the mentioned-above parameters are varied over the wide range (ca. +/-20%) of the reference ones. Different types of the theoretical and experimental adsorption isotherms (nitrogen at 77 K) were taken into account as the global ones. They were related to the mechanism of the primary, secondary or mixed micropore filling. The variations in some above-mentioned parameters have significant effects only for PSDs (and for average pore widths) corresponding to the primary micropore filling mechanism. On the other hand, for the process of the secondary micropore filling, the influence of these parameters (without the BET coefficient for adsorption on a "flat" surface, c(s,B)) is rather insignificant. Nevertheless the differences between local and global adsorption isotherms (in the whole range of relative pressures) the absence of micropores having pore half width equal to ca. 1 nm on PSDs was observed for studied adsorbate-adsorbent systems with exceptions of the strictly microporous adsorbents and/or the low values of c(s,B). Comparison of the experimental data with the generated theoretical isosteric enthalpy of adsorption indicates that the phenomenal uptake observed from experiment can be explained in terms of the reasonable solid-fluid interaction parameters. Therefore, we varied the heterogeneity of the adsorbent surface via the strength and the range of the solid-fluid potential and the parameter c(s,B) in order to reproduce the experimental data of enthalpy of adsorption. Note that similar procedure was applied by Wang and Johnson to reproduce some hydrogen adsorption data measured for carbon nanofibres. The analysis of the obtained results shows that the selection of the values of the parameters of the intermolecular interactions and the quantities characterizing the properties of the adsorbed phase and the heterogeneity of the adsorbent walls for molecular simulations should be made with care and the influence of possible errors should be considered.  相似文献   

8.
The aim of this work was to examine the static capacity of adsorption of anthracene by Posidonia oceanica and activated carbon. The effect of experimental parameters pH and contact time on the anthracene adsorption onto cited materials was investigated in detail. The results showed that the anthracene removal on both P. oceanica and activated carbon was unaffected in the pH range of 2–12. The equilibrium data fit well to the Langmuir model with a maximum adsorption capacity of 8.35 mg/g and 0.14 mg/g, respectively with activated carbon and P. oceanica.  相似文献   

9.
Molecular dynamics study of selective adsorption of PCB on activated carbon   总被引:1,自引:0,他引:1  
The selectivity of PCB adsorption from fish oil onto activated carbon (AC) was investigated by means of molecular dynamics to determine the importance of molecular planarity. PCB congeners 77 and 118 were selected for comparison purposes due to pronounced differences in mean adsorption efficiency and molecular geometry; triolein, a triacylglycerol of oleic acid (C18:1), was used as the representative fish oil component. Graphitic carbon structure was set up to serve as activated carbon model. Molecular force fields employed in the simulations combined short-range parameters from the OPLS with partial atomic charges obtained via quantum chemical calculations using DFT/B3LYP/6-31**G+ and Solvation Model 6. We modified the dihedral angle potential between the PCB aromatic rings and applied Schrödinger's Jaguar package to evaluate the required force field constants. Our complete system comprised a number of PCB molecules dissolved in triacylglycerol that overlaid and filled the pores of an AC structure. The production run of 4 ns provided strong indications that smaller pores will be conductive to better selectivity though also resulted in certain doubts concerning the estimation and assignment of partial atomic charges on the activated carbon. The majority of PCB molecules trapped in pores were attached via cl-AC “bonding”, leaving the main part of the PCB molecule free to interact with triolein. The cl-AC adsorption energy was found to surpass the energy criteria conventionally used for hydrogen bonds. Planar orientation assumed by a PCB molecule in a very energetically favored position on top of the graphite sheet clearly supported the π-cloud overlap hypothesis.  相似文献   

10.
Ionic liquids (ILs) are considered as emergent pollutants as their synthesis and further use at a large scale might generate environmental problems. The adsorption on activated carbons represents one of the most effective methods to remove ionic liquids and other micropollutants from wastewater. In this work, the adsorption properties on an activated carbon cloth of two pyridinium ionic liquids (4-tert-butyl-1-propylpyridinium bromide (IL1) and 4-tert-butyl-1-(2-carboxyethyl)pyridinium bromide (IL2)) newly synthesized, were compared with the ones of ibuprofen. The adsorption kinetics and isotherms were studied at pH 3 and 7.5. The adsorption thermodynamic parameters calculated from the isotherms indicate an exothermic process, typical of physisorption. The adsorption kinetics of a mixture of the molecules show a competition between ibuprofen and IL2. The location of each adsorbed ionic liquid and ibuprofen into the porosity of the activated carbon cloth was determined from N2 (at 77 K) and CO2 adsorption isotherms (at 273 K). The purification process of an effluent containing the ionic liquids and the ibuprofen in mixture or in single solute could be workable by adsorption on an activated cloth.  相似文献   

11.
The effects of pore length distribution (PLD) and solution resistance, Rsol, on the kinetics of double-layer charging/discharging of the activated carbon fiber cloth electrode (ACFCE) were investigated in a 30 wt% H2SO4 solution using nitrogen gas adsorption, a.c. impedance spectroscopy, the current transient technique, and cyclic voltammetry. The impedance spectra of the ACFCE were theoretically calculated based upon the transmission line model in consideration of the pore size distribution (PSD) and the PLD. From comparison of both the experimental and theoretical impedance spectra of the ACFCE, it is suggested that the deviation from the ideal impedance behavior of a cylindrical pore in the experimental impedance spectrum of the ACFCE is mainly ascribed to PLD, rather than to PSD. The cathodic current transients and cyclic voltammograms were theoretically calculated based upon the transmission line model as functions of the standard deviation of the PLD and Rsol. From the results, it is concluded that ion penetration into the pores is closely related to both and Rsol during double-layer charging/discharging of the ACFCE, that is, the larger and Rsol, the lower is the rate capability, thus causing higher retardation of ion penetration into the pores.  相似文献   

12.
X-ray microtomography coupled with image analysis was used to quantify the adsorption of vapours on activated carbon beds. This technique was tested using three different challenges: CCl4, water vapour and a mixture of water- and organic vapour. It is shown that the used technique allows determining the adsorption front progress in the case of organic vapour and mixture of water and organic vapour whereas the existence of this front was not so obvious in the case of water vapour. Experimental results obtained for organic vapours were interpreted on the basis of the Wheeler-Jonas equation: a good agreement was found between experimental and theoretical breakthrough times.  相似文献   

13.
The removal of nitrate ions with ethylenediamine (EDA)-functionalized activated carbon (AC-NH2) was studied in this work. Activated carbon prepared from Cucumerupsi manni Naudin seed shells using ZnCl2 (ACZ) was functionalized with EDA via a nitric acid oxidation followed by acyl chlorination and amidation process. The effect of pH, contact time, initial concentration and co-existing ions on the adsorption of nitrate ions have been investigated. The FTIR and elemental analysis revealed that amino groups were successfully grafted onto the ACZ after functionalization. The surface area and average pore of ACZ were found to be 1008.99 m2/g and 2.02 nm respectively. However, it was noticed that, after functionalization (AC-NH2), its surface area decreases to 113.43 m2/g meanwhile, its pore diameter increases to 2.48 nm. The experimental results of adsorption showed that AC-NH2 exhibit excellent nitrate ions uptake performance compared to ACZ which is attributed to the presence of the grafted amino groups on the ACZ. Nitrate adsorption follows pseudo-first-order kinetic model while the equilibrium adsorption data was best fitted the Freundlich isotherm suggesting that the adsorption process was predominated by physisorption. This study demonstrates that the prepared AC-NH2 is a promising adsorbent for nitrate ions removal from aqueous media.  相似文献   

14.
In this work, we report new experimental data of pure and binary adsorption equilibria of carbon dioxide and methane on the activated carbon RB2 at 273 and 298 K. The pressure range studied were 0–3.5 MPa for pure gases and 0–0.1 MPa for mixtures. The combination of the generalized Dubinin model to describe the pure CO2 and CH4 isotherms with the IAST (Ideal Adsorbed Solution Theory) for the mixtures provide a method for the calculation of the binary adsorption equilibria. This formulation predicts with acceptable accuracy the binary adsorption data and can easily be integrated in general dynamic simulation of PSA (pressure swing adsorption process) adsorption columns. It involves only three parameters, independent of the temperature, and directly determined with only one adsorption isotherm of CO2.  相似文献   

15.
In this work, Cr(III) adsorption on activated carbon obtained from olive stones in an upflow fixed-bed column at 30C was studied. The flow rate influence on the breakthrough curves at a feed concentration of 0.87 meq/L was investigated in an attempt to minimize the diffusional resistances. Breakthrough curves for a flow range of 2–8 mL/min were obtained at 10.5 cm bed height and inlet diameter of 0.9 cm. The mass transfer parameters indicated that the bed minimal resistance was attained at 2 mL/min. Therefore, the data equilibrium was carried out until the bed was saturated at 2 mL/min. The dynamic system generated a favorable isotherm with a maximum chromium uptake of 0.45 meq/g. A column sorption mathematical model was created considering the axial dispersion in the column and the intraparticle diffusion rate-controlling steps. The isotherm was successfully modeled by the Langmuir equation and the mathematical model described the experimental dynamic data adequately for feed concentrations from 0.26 to 3.29 meq/L.  相似文献   

16.
Cotton stalks, an agricultural waste, were chemically activated in a batch process using H3PO4 in a locally designed carbonizer at 420 °C in the absence of any purging gases. Mechanically cut short sticks were soaked in diluted H3PO4 for a short duration (Batch 1) and an extended period (Batch 2) prior to thermal treatment. The derived carbons contained both coarse and fine grains with acidic effect. Porosity was characterized by N2 adsorption at −196 °C and the isotherms analyzed by the α-method to estimate total and microporous surface areas in addition to total and microporous volumes. The produced carbons exhibited well-developed porosity that was essentially microporous in composition. Several key performance parameters were altered considerably as a result of impregnation with H3PO4 and the extended chemical activation period (Batch 2). Most of the internal porosity of both carbons was accessible to adsorption of iodine, whereas the uptake of methylene blue dye was proportional to the average size of micropores which were larger for the batch with a longer acid soaking time. SEM and FTIR investigations revealed the presence of a developed honeycomb structure and different oxygen functionalities on surfaces of the activated products which are advantageous in liquid-phase applications. Preliminary laboratory-scale experiments with Pb(II) indicate that adsorption capacity of target heavy metals compares favorably with commercially available activated carbons. The raw material, pre-processing, and activation process prove feasible for the production of activated carbon on a large scale, thereby providing a sustainable strategy for treatment of toxic waste streams.  相似文献   

17.
《Arabian Journal of Chemistry》2020,13(10):7544-7557
Activated carbon (AC) derived from gasified Glyricidia sepium woodchip (GGSWAC) was prepared using KOH and CO2 activation via microwave radiation technique to remove atenolol (ATN) from aqueous solution. The surface area (SBET) and total pore volume (TPV) of GGSWAC were 483.07 m2/g and 0.255 cm3, respectively. The n-BET model fits well with the isothermal data indicating a multilayer adsorption with the saturation capacity of 121, 143 and 163 mg/g at 30, 45 and 60 °C, respectively. The kinetic study showed that ATN adsorption followed Avrami model equation (R2  0.99). Based on the thermodynamic parameters, the adsorption of ATN onto GGSWAC was endothermic (ΔHS = 234.17 kJ/mol) in the first layer of adsorption and exothermic in the subsequent layer (ΔHL = −165.62 kJ/mol). The ATN adsorption was controlled by both diffusion and chemisorption. In continuous operation, the Thomas (R2 = 0.9822) and Yoon–Nelson (R2 = 0.9817) models successfully predicted the ATN adsorption.  相似文献   

18.
Summary The adsorption isotherms of water vapor on modified activated carbons are measured in order to study the role of various surface groups in the primary adsorption of water molecules on these adsorbents. These adsorption isotherms are analysed by means of the Dubinin-Serpinsky and Jovanovic equations, which take into account the special features of water vapor adsorption on microporous activated carbons. Numerical analysis of the measured adsorption isotherms by means of the above mentioned equations showed their limited applicability for interpreting adsorption mechanism of water molecules on activated carbons.
Adsorption von Wasserdampf auf modifizierter Aktivkohle
Zusammenfassung Die Adsorptionsisothermen von Wasserdampf auf modifizierter Aktivkohle wurden gemessen, um die Rolle verschiedener Oberflächentypen auf die Primäradsorption von Wassermolekülen auf diesen Adsorbenzien zu untersuchen. Die Adsorptionsisothermen wurden mittels der Dubinin-Serpinsky- und Jovanovic-Gleichungen analysiert, welche die speziellen Eigenheiten von Wasser auf mikroporöser Aktivkohle berücksichtigen. Die numerische Analyse der gemessenen Adsorptionsisothermen mittles der genannten Gleichungen zeigte ihre limitierte Anwendbarkeit zur Interpretation von Adsorptionsmechanismen von Wassermolekülen auf modifizierter Aktivkohle.
  相似文献   

19.
This study presents an experimental and theoretical analysis of the effect of surface heterogeneity on the capacity of 20 commercial activated carbons to adsorb hydrogen at 77 and 258 K and for maximum pressures of 20 bar. Some of the samples have been subjected to surface modification by impregnation or by surface oxidation prior to the hydrogen adsorption measurements. All the activated carbons have been analyzed by N2 adsorption at 77 K using the thermodynamic isotherm presented in a previous study. The hydrogen adsorption capacity of the activated carbons has been well correlated to the micropore volume and the characteristic m2 parameter of the thermodynamic isotherm accounting for the energy heterogeneity of the material. On the basis of the model presented here, we discuss how surface heterogeneity, in addition to the adsorption strength, might affect the ability of activated carbons and related materials to adsorb hydrogen.  相似文献   

20.
Palm oil fronds were used to prepare activated carbon using the physiochemical activation method, which consisted of potassium hydroxide (KOH) treatment and carbon dioxide (CO2) gasification. The effects of variable parameters activation temperature, activation time and chemical impregnation ratios (KOH: char by weight) on the preparation of the activated carbon and for the removal of pesticides: bentazon, carbofuran and 2,4-Dichlorophenoxyacetic acid (2,4-D) were investigated. Based on the central composite design (CCD), two factor interaction (2FI) and quadratic models were respectively employed to correlate the effect of variable parameters on the preparation of activated carbon used for the removal of pesticides with carbon yield. From the analysis of variance (ANOVA), the most influential factor on each experimental design response was identified. The optimum conditions for preparing the activated carbon from oil palm fronds were found as follows: activation temperature of 750 °C, activation time of 2 h and chemical impregnation ratio of 2.38. The percentage error between predicted and experimental results for the removal of bentazon, carbofuran and 2,4-D were 8.2, 1.3 and 9.2%, respectively and for the yield of the palm oil frond activated carbon was 5.6.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号