首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
刘茹  李海平  侯万国 《应用化学》2015,32(9):1061-1069
以三偏磷酸钠(STMP)为交联剂,合成了水溶性低交联度黄原胶(XG),依据其溶液粘度优化出了最佳合成条件;考察了电解质质量分数、pH值及温度对STMP交联黄原胶(简记为SP-c-XG)溶液流变性的影响,并与XG溶液进行了对比。 结果表明,在所研究的电解质(NaCl和CaCl2)质量分数(0~5.0%)、pH值(2~11)和温度(20~70 ℃)范围内,SP-c-XG和XG溶液的流变曲线均为假塑型,符合Herschel-Bulkley模型;其屈服值、表观粘度和动力学模量随电解质质量分数增大均先下降后上升,而随pH值的升高先升高后降低,随温度升高而降低。 SP-c-XG和XG溶液具有相似的流变性,但与XG溶液相比,SP-c-XG溶液具有更高的屈服值和表观粘度,特别是具有更强的弹性和耐温性,在油田强化采油领域具有重要应用前景。  相似文献   

2.
The solids concentration, pH and NaCl were found to have a very significant effect on the rheological properties of aqueous dispersions of positively charged Al-Mg mixed metal hydroxide particles (Al-Mg MMH). At low solids concentrations the flow curves of the dispersions at natural pH followed the Newtonian model very well in the observed range of shear rate, while at high solids contents the dispersions developed a yielding type of response, with yield stress increasing rapidly as solids concentration increases. The variation in rheological properties with pH and NaCl contents correlated well with the change in surface properties of Al-Mg MMH particles. Al-Mg MMH dispersions with maximum yield stress occurred near the isoelectric point (IEP) where the Zeta potential (or electrophoretic mobility) is zero. At the IEP, the shear yield stress decreased monotonously in magnitude as a function of the increasing NaCl concentration, which is in contrast to the increment in the yield stress observed below the DEP at NaCl concentrations less than 0.1 mol dm-3. At low NaCl concentrations, significant shear yield stress differences exist at and below the IEP. By contrast, at high NaCl concentrations, almost identical shear yield stress versus NaCl results are obtained in both cases.  相似文献   

3.
The flow and viscoelastic properties of a lubricating grease formed from a thickener composed of lithium hydroxystearate and a high-boiling-point mineral oil were investigated as a function of thickener concentration. The flow properties of grease were measured using continuous shear rheometry, while the viscoelastic properties were measured using oscillatory shear measurements. The flow properties show that grease is a shear-thinning fluid with a yield stress that increases with thickener concentration. At concentrations of lithium hydroxystearate greater than 5% by volume, the storage modulus, G', was found to be greater than the loss modulus, G", with both moduli increasing with increasing thickener concentration, below this critical concentration G" was greater than G'. Slip at the wall of the measuring platens was a major problem encountered during the rheological measurement of grease, this is hardly surprising, and greases are designed to slip in their lubricating functions. Therefore the measuring platens were roughened by sandblasting and significantly higher yield values were recorded with the roughened geometries. Creep experiments were also performed. In the creep test, yield stresses of greases could be obtained. Zero shear viscosity was also calculated from the creep experiment and as a result viscosities over nine orders of magnitude were obtained. The power law index of the scaling law of the elastic modulus and yield stress with increasing volume fraction was found to be 4.7+/-0.2 suggesting that the flocculation of the particles that compose the grease is likely to be of the chemically limited aggregation variety.  相似文献   

4.
利用不同煤种的煤和生物油制备了不同浓度的生物油煤浆,考察了生物油煤浆的成浆浓度、表观黏度、流变特性和稳定性。结果表明,生物油煤浆是具有一定屈服应力的非牛顿流体,其流变特性可用宾汉姆方程来描述;生物油煤浆的屈服应力和表观黏度都随着固体浓度的增加而增大;随着剪切速率的增加,生物油煤浆的表观黏度减小;四种煤中,无烟煤的成浆浓度最高,可达42%,其含碳量高达49%,相当于同种煤制成的74%的水煤浆含量。烟煤次之,褐煤最低;生物油与煤粉之间能够形成絮凝性的大分子网络结构,使得生物油煤浆存在屈服应力并能够保持良好的静态稳定性,4.0~5.0 d天没有软沉淀产生,数月没有硬沉淀产生。  相似文献   

5.
Single-domain manganese ferrite nanoparticles have been synthesized with narrow particle size distribution using the combustion technique. Influence of fuel ratios on the as-prepared powders were characterized by XRD, SEM, VSM, N2 adsorption at −196 °C and conversion of cyclohexene at 200–400 °C. Ratios of fuel to cations were maintained variously at 0.0, 0.67, 1.33 and 2.67.The fuel to cations ratio of 2.67 gives better yield in the formation of nanocrystalline Mn ferrite and single-domain particles with a narrow range of size distribution. Maximum magnetization and coercivity values of the investigated ferrite are also greater for the ratio of 2.67. These values measured at room temperature are found to be 68.58 emu/g and 62.57 Oe, respectively. The BET surface area of the investigated solids was found to decrease by increasing the ratio between fuel and cations due to increasing the flame temperature. However, this treatment resulted in a significant increase in catalytic activity of the as-synthesized solids. All solids investigated behaved as dehydrogenation catalysts. The change in fuel/cations ratios did not alter the mechanism of dehydrogenation of cyclohexene, but increased the concentration of active sites involved in the catalyzed reaction.  相似文献   

6.
The rheological properties of titanium dioxide dispersed in water are measured over a wide range of powder concentrations, temperatures, and pH values. The value of intrinsic viscosity of titanium dioxide measured with an Ubbelohde capillary viscometer is 3.55, which is useful for determining the shape and aggregation property of the particles. The yield stress and steady shear viscosity of titanium dioxide with broad and narrow particle size distributions were measured over a wide range of solid volume fractions on a Brabender rheometer. It is observed that the rheological properties of the suspensions are quite different due to the difference in particle size distributions. Quemada, Casson, and Zhou's models were used to fit the experimental data and useful parameters were obtained. Calculated data are also in good agreement with the experimental data. As expected, the shear viscosity and yield stress decrease with increasing temperature. But when the temperature is around 50 degrees C, yield stress increases with increasing temperature while shear viscosity exhibits a complex behavior. The phenomena are very interesting and special. The Peclet number was used to analyze the shear thickening behavior. Models were also used to describe the shear viscosity under different temperatures and the master plots of the reduced variables eta/eta(infinity) vs t(c)gamma; at different temperatures are superimposed, which means the agreement is fair and the models are suitable to describe the rheological properties of titanium dioxide suspensions. pH effects were investigated on a Rheometrics RFS-II rheometer and it was found that pH can change the surface charge of the particles, which also affects the rheological behavior. The pH at which maximum shear viscosity and yield stress occur is in concordance with the isoelectric point. Copyright 2001 Academic Press.  相似文献   

7.
Composite membranes prepared from poly(vinyl alcohol) and poly(sulfone) were crosslinked with trimesoyl chloride (TMC) solutions. The degree of crosslinking, crystallinity, surface roughness and hydrophobicity of the crosslinked PVA–PSf membranes were determined from attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR), X-ray diffraction (XRD), atomic force microscopy (AFM) and contact angle measurements, respectively. Results showed a consistent trend of changes in the physicochemical properties: the degree of crosslinking, crystallinity, surface roughness, hydrophobicity and swelling degree all decrease with increasing crosslinking agent (TMC) concentration and reaction time. The crosslinked membrane performance was assessed with pervaporation dehydration of ethylene glycol solutions at a range of concentrations (30–90 wt% EG) in the feed mixtures. The total flux of permeation was found to decrease, while the selectivity to increase, with increasing TMC concentration and reaction time. The decrease in flux was most prominent at low EG concentrations in the feed mixtures. In addition, the temperature effect on the pervaporation dehydration was investigated in relation to solution–diffusion mechanisms.  相似文献   

8.
Changes in the rheological properties of a model concentrated oil-in-water emulsion stabilized with globular protein (bovine serum albumin) upon the addition of nonionic surfactant polyoxyethylene (20) sorbitan monooleate (Tween 80) are studied. Non-Newtonian behavior is typical of the emulsions in question; moreover, they are characterized by the existence of yield stress. At stresses above the yield stress, the viscosity drops not immediately but after the intermediate Newtonian region at the flow curve. For all systems studied, the total flow curve is exhibited with the minimum Newtonian viscosity that is adequately described by the Cross formula. An increase in the Tween 80 concentration leads to a decrease in the viscosity of emulsion. Two threshold phenomena on the concentration dependences of rheological properties are revealed: at low concentration of added nonionic surfactant, the yield stress drops abruptly, whereas the viscosity lowers considerably with an increase in surfactant concentration to 1 × 10?3 mol/l and the emulsion becomes unstable. The effects observed can be explained by the gradual displacement of high-molecular-weight stabilizer from interfacial layers and its replacement by nonionic surfactant.  相似文献   

9.
Rheological characterization of sludge is known to be an essential tool to optimize flow, mixing and other process parameters in wastewater treatment plants. This study deals with the characterization of thickened excess activated sludge in comparison to raw primary sludge and excess activated sludge. The effects of key parameters (total solid concentration, temperature, and pH) on the rheology and flow behavior of thickened excess activated sludge were studied. The rheological investigations were carried out for total solid concentration range of 0.9–3.7 %w/w, temperature range of 23–55 °C, and pH range of 3.6–10.0. Different rheological model equations were fitted to the experimental data. The model equations with better fitting were used to calculate the yield stress, apparent, zero-rate, infinite-rate viscosities, flow consistency index, and flow index. The decrease in concentration from 3.7 to 3.1 %w/w resulted in a drastic reduction of yield stress from 27.6 to 11.0 Pa, while a further reduction of yield stress to 1.3 Pa was observed as solid concentration was reduced to 1.3 %w/w. The viscosity at higher shear rate (>600 s?1) decreased from 0.05 Pa·s down to 0.008 Pa·s when the total solid concentration was reduced from 3.7 to 0.9 %. Yield stress decreased from 20.1 Pa down to 8.3 Pa for the Bingham plastic model when the temperature was raised from 25 to 55 °C. Activation energy and viscosity also showed decreasing trends with increasing temperature. Yield stress of thickened excess activated sludge increased from a value of 6.0 Pa to 8.3 Pa when the pH was increased from 3.6 to 10.0. The effect of polymer dose on the rheological behavior of the thickening of excess activated sludge was also investigated, and the optimum polymer dosage for enhanced thickener performance was determined to be 1.3 kg/ton DS.  相似文献   

10.
The rheological properties of three cellulose samples are investigated, including the dependence of the non‐Newtonian Index, structural viscosity and zero shear viscosity on temperature and the concentration of their paraformaldehyde/dimethyl sulfoxide solutions; the values of viscous flow activation energy of them are higher than that of the viscose solution. With the increase of molecular weight, solution concentration and the decrease of temperature, the rheological properties become worse. The rheological properties of cotton linters Cotton 1 are better than those of wood pulp Wood 2 despite a similar degree of polymerization. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

11.
The viscoelastic properties of decrosslinked irradiation‐crosslinked polyethylenes using a supercritical methanol were investigated via oscillatory dynamic shear measurements. Decrosslinked polymers at a low reaction temperature exhibited solid‐like rheological properties, as evidenced by a small slope at G′ and G″, a long relaxation time, slow stress relaxation behavior, and considerable yield stress. In contrast, decrosslinked polymers at a high temperature exhibited liquid‐like rheological properties that included a large slope in G′ and G″, a short relaxation time, fast stress relaxation behavior, and nonyield stress. The difference in the viscoelastic properties of the decrosslinked polyethylenes was attributed to the difference in the gel content with the reaction temperature. A higher gel content induced stronger solid‐like viscoelastic properties. Hence, the rheological measurements were useful for analyzing the molecular structure of decrosslinked polymers using a supercritical fluid. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1265–1270, 2010  相似文献   

12.
We have investigated the rheological properties of the Celanese copolyester with the composition 75 mol% p-hydroxybenzoic acid and 25 mol% 2-hydroxy-6-naphthoic acid (designated as 75HBA/25HNA). Three different samples having inherent viscosities 3.0, 6.0, and 9.2 dL/g were studied. A flow instability is observed at low shear stress which produces an irregularity in the fiber diameter. The surface irregularity becomes less pronounced above a minimum shear stress, indicating that the flow instability originates in the capillary. For these nematic melts, the minimum shear stress marking the onset of more regular flow is found to decrease with increasing temperature and with decreasing inherent viscosity of the copolyester. The die swell ratio of extrudates decreases with increasing shear stress. Fibers were spun from the samples having ηinh = 9.2 and 3.0 dL/g. The initial modulus and tenacity to break for 75HBA/25HNA fibers spun at sufficiently high shear stress to produce smooth filaments are significantly lower than the values we previously reported for fibers of the 58HBA/42HNA copolyester. Moreover, the optimum properties are obtained at relatively low spin-draw ratios. The 75HBA/25HNA polyester also exhibits a yield stress which decreases with increasing temperature. This observation indicates the presence of crystallities at the test temperatures. We believe that the higher content of HBA in the present copolymer gives rise to crystallization of HBA blocks in the thread line and that defects are introduced at higher spin-draw ratios which cause the mechanical properties to become worse.  相似文献   

13.

Diffusivities of sulfuric acid in Aspen wood were experimentally determined at various diffusional temperatures and fitted to Arrhenius equations. These equations were subsequently incorporated into a theoretical model to establish the effect of transient acid concentration gradients within a solid substrate during acid-catalyzed hydrolysis of hemicellulose. Total xylose yield was found to decrease for increasing chip size, and this effect was intensified by increasing reaction temperature. Quantitative criteria were established for assessment of transient acid concentration effects upon xylose yield and reaction time at various reaction conditions.

  相似文献   

14.
15.
The effect of halloysite nanotube (HNTs) particles and polyolefin elastomer-graft-maleic anhydride (POE-g-MA) in the polylactic acid (PLA) and polyolefin elastomer (POE) blend with a constant weight percentage composition have been studied using the scanning electron microscopy, rheometry, dynamic mechanical thermal analysis (DMTA) as well as the thermogravimetric testing. Through these, it was found that the simultaneous presence of POE-g-MA and HNT significantly improves the melt and solid viscoelastic properties and thermal stability of PLA/POE. This improvement is attributed to the increased interactions and improved interfacial adhesion between the present components. The microscopic images of PLA/POE-g-MA/POE (80/8/12) blend containing 4 wt% HNT showed a microstructure similar to the interconnected morphology due to the enhanced compatibility and better dispersion of nanoparticles. The rheological behavior was significantly changed for the PLA/POE blend containing POE-g-MA and 4 wt% HNT. This dramatic increase in the rheological properties was consistent with the morphological results. Only one glass transition temperature was observed in the DMTA plot of PLA/POE-g-MA/POE blend, which was a sign of a homogeneous, fully compatible system. In addition, a very strong reinforcing effect of HNT particles was observed in the presence of POE-g-MA for the nanocomposites. Finally, the thermogravimetric analysis showed a completely different trend for thermal degradation of PLA/POE-g-MA/POE nanocomposite containing 4 wt% HNT, which could be an indication of microstructural development.  相似文献   

16.
《Colloids and Surfaces》1993,69(1):15-22
The structure of sonic flocculated dispersions can be changed reversibly by means of shearing. Often the changes are not instantaneous. The resulting shear-history effect gives rise to a complex but interesting rheological behaviour. Using non-aqueous suspensions of fumed silica, the rheological equilibrium properties of such systems are investigated. To change the floc structure, the water content of the particles is altered. As well as the steady-state shear viscosity, the equilibrium modulus and the yield stress are measured. Various techniques are compared. The effect of concentration on the equilibrium properties is used to test some structural models. The concentration dependence is best described by a power-law relation, the power being identical for modulus and yield stress. These results compare well with some theoretical predictions. Contrary to the assumptions used in the modelling, the yield stress is often dominated by kinetic phenomena. This shortcoming also shows up in the predictions for the critical strain.  相似文献   

17.
Nonionic polyethylene oxide (PEO) and anionic polyacrylamide (PAM) flocculation of kaolinite dispersions has been investigated at pH 7.5 in the temperature range 20-60 degrees C. The surface chemistry (zeta potential), particle interactions (shear yield stress), and dewatering behavior were also examined. An increase in the magnitude of zeta potential of kaolinite particles, in the absence of flocculant and at a fixed PEO and PAM concentration, with increasing temperature was observed. The zeta potential behavior of the flocculated particles indicated a decrease in the adsorbed polymer layer thickness, while at the same time, however, the adsorbed polymer density showed a significant increase with increasing temperature. These results suggest that polymer adsorption was accompanied by temperature-influenced conformation changes. The hydrodynamic diameter and supernatant solution viscosity of both polymers decreased with increasing temperature, consistent with a change in polymer-solvent interactions and conformation, prior to adsorption. The analysis of the free energy (DeltaG(ads)) of adsorption showed a strong temperature dependence and the adsorption process to be more entropically than enthalpically driven. The polymer conformation change and increased negative charge at the kaolinite particle surface with increasing temperature resulted in decreased polymer bridging and flocculation performance. Consequently, the shear yield stress and the rate and the extent of dewatering (consolidation) of the pulp decreased significantly at higher temperatures (>40 degrees C). The temperature effect was more pronounced in the presence of PEO than PAM, with 40 and 20 degrees C indicated as the optima for enhanced performance of the latter and former flocculants, respectively. The results demonstrate that a temperature-induced conformation change, together with polymer structure type, plays an important role in flocculation and dewatering behavior of kaolinite dispersions.  相似文献   

18.
The time dependences of the elastic moduli and loss moduli of aqueous solutions of Alcoflood-254S carboxylated polyacrylamide, containing chromium(III) acetate as a cross-linking agent, were studied by oscillation rheometry in the temperature interval 50–80°?. The gel time increases with a decrease in the temperature, as well as in the concentration of the polymer and cross-linking agent. The elastic properties of hydrogels at the moment of the onset of their formation, characterizing the concentration of cross-links between the macromolecules, are due to the polymer concentration in the solution and are independent of the chromium(III) acetate concentration and temperature. Presumably, equal degree of conversion in the reaction between carboxylate groups of the polymer and chromium(III) ion, leading to cross-linking of macromolecules of carboxylated polyacrylamide, allows determination of the kinetic parameters of the gelation from data obtained by oscillation rheometry under nonisothermal conditions.  相似文献   

19.
Chemical polymerization of acrylamide at room temperature was examined by using thioglycolic acid-cerium (IV) sulfate and thioglycolic acid-KMnO4 redox systems in acid aqueous medium. Water soluble polyacrylamides containing thioglycolic acid end groups were synthesized. The effects of the molar ratio of acrylamide to Ce(IV) n AAm /n Ce(IV) , the polymerization time, the temperature, the monomer concentration, the molar ratio of cerium (IV) sulfate to thioglycolic acid and the concentration of sulfuric acid on the yield and molecular weight of polymer were investigated. Lower molar ratios of acrylamide/Ce(IV) at constant monomer concentration resulted in an increase in the yield but a decrease in molecular weight of polymer. The increase of reaction temperature from 20 to 70°C resulted in a decrease in the yield but generally resulted in a constant value for the molecular weight of polymer. With increasing polymerization time, the yield and molecular weight of polymer did not change substantially. Ce(IV) and Mn(VII) ions are reduced to Ce(III) and Mn(II) ions respectively in the polymerization reaction. The existence of Ce(III) ion bound to polymer was investigated by UV-visible spectrophotometry and fluoresce measurements. The amount of Mn(II) incorporated into the polymer was determined using graphite furnace atomic absorption spectrometry. The mechanism of this phenomenon is discussed.  相似文献   

20.
The effects of calcination temperature, molar ratio and the doping by CeO2 on the solid–solid interactions, surface and catalytic properties of Mn/Mg mixed oxide system have been studied by XRD, nitrogen adsorption at −196 °C and the catalytic decomposition of hydrogen peroxide at 20, 30, and 40 °C.

The results revealed that the manganese oxides interacted with magnesium oxide to yield well crystallized magnesium manganates at temperatures starting from 600 °C, this reaction found to be affected by the molar ratio of the reacted oxides present and also by the dopant content. However, the treatment of the Mn/Mg mixed oxide system with increasing amounts of manganese and cerium oxides followed by calcination at 400–800 °C brought about an increase in the catalytic activity of the resulting solids, whilst the opposite effect was observed in the surface area of the investigated solids. These treatments resulted in an increase in the particle size of MgO and a decrease in both the activation energy of sintering of the investigated system and that necessary for hydrogen peroxide decomposition reaction.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号