首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Vibrational Spectroscopy》2007,45(2):201-208
Raman spectroelectrochemical study has been done with electrochemically prepared films of polyaniline and a copolymer of polyaniline and metanilic acid using a green laser excitation (532 nm). The experimental variables included solutions of different pH between 0.5 and 9.0, and varying electrode potential between 0.0 and 0.8 V versus Ag/AgCl. Raman bands within the wavenumber limits of 500–1700 cm−1 have been analysed, and their changes, proceeding with varying of electrode potential and solution pH, have been interpreted. It has been stressed that the spectral changes of polymer films proceed continuously rather than stepwise by changing the electrode potential. Considering leucoemeraldine and pernigraniline forms of polyaniline as fully reduced and oxidised structures, respectively, it could be concluded that many different redox forms can exist between these two limiting forms, rather than the only possible emeraldine form.  相似文献   

2.
《Vibrational Spectroscopy》2011,55(2):148-154
The adsorption of 4-aminopyridine (4-AP) on Co and Ag electrodes in acid or alkaline solutions of KCl and KI electrolyte salts were monitored by the Surface-enhanced Raman Spectroscopy (SERS) technique. The SERS intensity for the Ag electrode was in 2 orders of magnitude higher than for the Co electrode, due to the enhancement of the Raman cross-section on Ag by the surface-plasmon excitation. In acidic chloride medium (pH 4), the SERS results for Ag electrodes indicate that the protonated form of 4-AP (4-APH+) adsorbs in the potential range of −0.1 to −0.6 V (Ag|AgCl|KCl sat) through hydrogen-bonding between 4-APH+ and Cl adsorbed on the electrode surface; at more negative potentials the neutral form 4-AP is the predominant adsorbed species. For Co electrode in the same medium, only bands due to neutral 4-AP were observed in the spectra at −0.8 and −0.9 V. For more negative potentials bands assigned to both 4-AP and 4-AP surface complex are observed, with the lasts being enhanced, as the potentials are turned more negative. In alkaline chloride medium (pH 13), for less negative potentials the bands assigned to free 4-AP were observed in the spectra of both Ag and Co surfaces. For more negative potentials, only bands assigned to the 4-AP surface complex were observed. For 0.1 mol L−1 KI acidic or alkaline solutions, bands assigned to 4-AP and 4-APH+ were observed in a wider potential range than in chloride solutions. An adsorption scheme of 4-AP on Ag and Co is proposed for acidic and alkaline solutions.  相似文献   

3.
The electrochemical regeneration of NADH/NAD+ redox couple has been studied using poly(phenosafranin) (PPS)-modified carbon electrodes to evaluate the formal potential and catalytic rate constant for the oxidation of NADH. The PPS-modified electrodes were prepared by electropolymerization of phenosafranin onto different carbon substrates (glassy carbon (GC) and basal-plane pyrolytic graphite (BPPG)) in different electrolytic solutions. The formal potential was estimated to be ? 0.365 ± 0.002 V vs. SHE at pH 7.0. As for the bare carbon electrodes, the oxidation of NADH at the BPPG electrode was found to be enhanced compared with the GC electrode. For the PPS-modified electrodes, it was found that the electrocatalysis of PPS-modified electrodes for the oxidation of NADH largely depends on the carbon substrate and electrolyte solution employed for their preparation, i.e., the PPS-modified BPPG electrode prepared in 0.2 M NaClO4/acetonitrile solution exhibits an excellent and persistent electrocatalytic property toward NADH oxidation in phosphate buffer solution (pH 7.0) with a diminution of the overpotential of about 740 and 670 mV compared with those at the bare GC electrode and the PPS-modified GC electrode prepared in 0.2 M H2SO4 solution, respectively. A quantitative analysis of the electrocatalytic reaction based on rotating disk voltammetry gave the electrocatalytic reaction rate constants of the order of 103–104 M?1 s? 1 depending on the preparation conditions of the PPS-modified electrodes.  相似文献   

4.
The electrocatalytic oxidation of d-glucosamine (2-amino-2-deoxy-d-glucose) in alkaline and neutral solutions was examined using a carbon felt electrode modified with 2 nm core sized gold nanoparticles (Au2 nm nanoparticles) and a gold plate electrode. The electrocatalytic voltammetric oxidation curves of d-glucosamine were obtained in both solutions. The voltammetric responses for the electrocatalytic oxidation at a Au2 nm nanoparticle-modified electrode in both alkaline and neutral solutions were almost the same to those at a gold plate electrode. The oxidized product was identified to be d-glucosaminic acid (2-amino-2-deoxy- d-gluconic acid) generated by the 2-electron oxidation product of d-glucosamine by electrospray ionization time-of-flight mass spectra (ESI TOF-MS). The HPLC results also indicated that the oxidation product was d-glucosaminic acid.The controlled-potential electrolysis of d-glucosamine was performed at the Au2 nm nanoparticle-modified carbon felt electrodes in both alkaline and neutral solutions. In the alkaline solution, at a potential of −0.2 V, d-glucosaminic acid was formed with a current efficiency of 100%. In the neutral solution, electrolysis at 0.4 V on d-glucosaminic acid was obtained with current efficiencies of 70%.  相似文献   

5.
Electrochemical scanning tunneling microscopy (EC-STM) was applied to observe phospholipid layers over thiol-modified gold substrates as a model biological cell membrane. On a monolayer of 1-octanethiol on Au (1 1 1), a synthetic lipid, 1,2-dihexanoyl-sn-glycero-3-phosphocholine, was introduced in a neutral 0.05 M NH4ClO4 buffer solution. The lipid molecules formed a fluidic layer at 0.0 V vs. RHE of the substrate electrode potential. By cycling the electrode potential between +0.2 V and −0.2 V, the lipid layer reversibly changed over between the fluidic phase and a striped/grainy structure. This structural change might involve partial decomposition and oligomerization of phospholipids. This method will contribute for molecular biology by revealing the nanometer-scale structure of cell membrane.  相似文献   

6.
In this paper, we compared the use of gelatin-functionalized carbon nanotubes (CNTs) as substrates for Hemoglobin (Hb) immobilization and as electrodes for electrochemical reduction of the absorbed Hb. The non-covalently gelatin-functionalized CNTs possessed an improved solubility in aqueous solution and may have an enhanced biocompatibility with Hb. The characteristics of Hb/gelatin-CNTs composite films were studied by using UV–vis spectroscopy, FTIR spectroscopy and electrochemical methods. The immobilized Hb showed a couple of quasi-reversible redox peaks with a formal potential of −0.35 V (vs. SCE) in 0.10 M pH 7.0 phosphate buffer solution (PBS). The surface concentration of electroactive Hb immobilized on gelatin-CNT/GC electrode was about 4.34 × 10−10 mol cm−2.  相似文献   

7.
Hemoglobin modified electrode was successfully fabricated to realize direct electrochemistry by immobilizing of Hemoglobin (Hb) in bimodal mesoporous silica (BMS) and chitosan (CS) inorganic–organic hybrid film. Here, BMS acted as a support to immobilize Hb due to its large pores and CS acted as a binder to increase film adherence and stabilizer to prevent the leakage of Hb. The resulting electrode (Hb/BMS/CS) gave a well-defined, reversible redox couple for HbFe(III)/Fe(II) with a formal potential of about −0.32 V (vs. Ag/AgCl) in pH 7.0 phosphate buffer solution. Hb/BMS/CS electrode showed a better electrocatalytial performance to H2O2 with wider linear detection range, lower detection limit, and higher sensitivity than that at electrode without BMS. The improved electrocatalytic performance for Hb/BMS/CS electrode was possibly contributed to BMS bimodal structure, whose large pores with 10–40 nm provide favorable conditions for protein immobilization and small pores with 2–3 nm avoid the mass-transfer limitations. In addition, UV–Vis and FTIR spectra indicated that Hb well maintained its native structure in the hybrid film.  相似文献   

8.
In situ Raman spectroscopy was conducted on thin film electrodes of pure LiCoO2 in order to observe the nature of the changes in interfacial structure between LiCoO2 and organic solutions (propylene carbonate and ethylene carbonate containing 1 M LiClO4) when LiCoO2 is scanned up to highly anodic potentials (∼5.0 V Li+/Li). Raman spectra and cyclic voltammograms were recorded simultaneously during the potential scan. We observed a sudden increase in the background signals of the Raman spectra at potentials more positive than 4.7 V. The increased background did not change after potential cycling. The change was irreversible, indicating that surface film formation occurred at positive potentials. As organic compounds fluoresce by visible light, the increased background is ascribed to the formation of a film on the LiCoO2 electrode surface in organic solutions.  相似文献   

9.
Amperometric biosensing of glutamate using nanobiocomposite derived from multiwall carbon nanotube (CNT), biopolymer chitosan (CHIT), redox mediator meldola’s blue (MDB) and glutamate dehydrogenase (GlDH) is described. The CNT composite electrode shows a reversible voltammetric response for the redox reaction of MDB at −0.15 V; the composite electrode efficiently mediates the oxidation of NADH at −0.07 V, which is 630 mV less positive than that on an unmodified glassy carbon (GC) electrode. The CNTs in the composite electrode facilitates the mediated electron transfer for the oxidation of NADH. The CNT composite electrode is highly sensitive (5.9 ± 1.52 nA/μM) towards NADH and it could detect as low as 0.5 μM of NADH in neutral pH. The CNT composite electrode is highly stable and does not undergo deactivation by the oxidation products. The electrode does not suffer from the interference due to other anionic electroactive compounds such as ascorbate (AA) and urate (UA). Separate voltammetric peaks have been observed for NADH, AA and UA, allowing the individual or simultaneous determination of these bioanalytes. The glutamate biosensor was developed by combining the electrocatalytic activity of the composite film and GlDH. The enzymatically generated NADH was electrocatalytically detected using the biocomposite electrode. Glutamate has been successfully detected at −0.1 V without any interference. The biosensor is highly sensitive, stable and shows linear response. The sensitivity and the limit of detection of the biosensor was 0.71 ± 0.08 nA/μM and 2 μM, respectively.  相似文献   

10.
It was found that the copolymer poly(aniline-co-o-aminophenol) (PANOA) can strongly catalyze the reduction of arsenate in a NaCl solution, which was proved by cyclic voltammetry and the determination of activation energy. On the basis of the electrocatalytic reduction of arsenate, the PANOA copolymer was used as a probe to determine directly arsenate. The electrocatalytic activity of the PANOA electrode toward As(V) reduction strongly depended on the pH and the applied potential. Under the optimal conditions, the PANOA electrode can be used to determine directly As(V) concentration in a wide linear range (n = 19) of 0.949 and 495 μM with a correlation coefficient of 0.995 and a limit of detection of 0.495 μM. The sensitivity of the electrode was 0.192 μA μM?1 cm?2. The PANOA electrode had the good storage stability and a less negative operation potential of ?0.15 V (vs. SCE).  相似文献   

11.
Conductive polyaniline (PANI) was electropolymerized on undoped 100 nm diamond powders in sulphuric acid solution containing aniline to improve the conductivity and the electrochemistry of the nano- or submicro-scaled diamond particles. Cyclic voltammetry (CV) experiment was carried out at an upper potential of 1.1 V in initial sweeps and a potential range of ?0.2–0.9 V for the growth of PANI on a diamond powder electrode. Field emission-scanning electron microscope (FESEM) result reveals that the diamond particles were well coated by PANI films with globular or fibroid surface morphology. Cyclic voltammetry and electrochemical impedance spectroscopy (EIS) were employed to investigate the electrochemical properties of the PANI/diamond composite electrode. It presents lower resistance and better capacitance than the pristine diamond powder.  相似文献   

12.
This work points out that electrogeneration of silica gel (SG) films on glassy carbon electrodes (GCEs) can be applied to immobilize biomolecules – hemoglobin (Hb) or glucose oxidase (GOD) or both of them in mixture – without preventing their activity. These proteins were physically entrapped in the sol–gel material in the course of the electro-assisted deposition process applied to form the thin films onto the electrode surface. SG films were prepared from a precursor solution by applying a suitable cathodic potential likely to induce a local pH increase at the electrode/solution interface, accelerating thereby polycondensation of the silica precursors with concomitant film formation. Successful immobilization of proteins was checked by various physico-chemical techniques. Both Hb and GOD were found to undergo direct electron transfer, as demonstrated by cyclic voltammetry. GCE–SG–Hb gave rise to well-defined peaks at potentials Ec = −0.29 V and Ea = −0.17 V in acetate buffer, corresponding to the FeIII/FeII redox system of heme group of the protein, while GCE–SG–GOD was characterized by the typical signals of FAD group at Ec = −0.41 V and Ea = −0.33 V in phosphate buffer. These two redox processes were also evidenced on a single voltammogram when both Hb and GOD were present together in the same SG film. Hb entrapped in the silica thin film displayed an electrocatalytic behavior towards O2 and H2O2 in solution, respectively in the mM and μM concentration ranges. Immobilized GOD kept its biocatalytic properties towards glucose. Combined use of these two proteins in mixture has proven to be promising for detection of glucose in solution via the electrochemical monitoring of oxygen consumption (decrease of the oxygen electrocatalytic signal).  相似文献   

13.
The infrared spectra of ethylmethylfluorosilane (CH3SiHFCH2CH3) have been recorded as a vapour, liquid and solid at 78 K in the 4000–50 cm−1 range and isolated in an argon matrix at ca. 5 K. Infrared spectra of two different solid phases were obtained after annealing to temperatures of 120 and 130 K, and recooling to 78 K. Although the IR spectra were quite similar in the MIR region, certain differences were noted in the FIR region below 400 cm−1. The most stable conformer MeMe was present after annealing to 130 K, but three bands belonging to MeH were detected after annealing to 120 K. Various infrared bands changed intensity when the argon matrix was annealed to temperatures between 20 and 35 K, and some of these were related to changes in the conformational abundance.Raman spectra of the liquid were recorded at room temperature and at various temperatures between 295 and 153 K. Spectra of an amorphous and annealed solid were recorded at 78 K. In the variable temperature Raman spectra, various bands changed in intensity and were interpreted in terms of conformational equilibria between the three possible conformers. Complete assignments were made for all the bands of the most stable conformer MeMe. From various bands assigned to the three conformers, the conformational enthalpy difference ΔH from MeMe to the intermediate energy conformer MeH was found to be 0.5 kJ mol−1 and to the highest conformer MeF was 0.7 kJ mol−1. At ambient temperature this leads to 39% MeMe, 32% MeH and 29% of the MeF conformer in the liquid.Ab initio calculations in the RHF, MP2, DFT approximations and very accurate G2 calculations were carried out. With one exception, the MeMe conformer had the lowest enthalpy in all these calculations, the MeH had the intermediate and the MeF the highest enthalpy, and the calculations were in good agreement with the measurements.  相似文献   

14.
In the present study, the surface poisoning of electrocatalytic monosaccharide oxidation reactions at gold electrodes were investigated. In the cyclic voltammetric studies, the electrocatalytic oxidation of aldohexose and aldopentose type monosaccharides, aminosugars, acetyl-glucosamine and glucronamide were observed at gold plate electrodes in alkaline medium. However, in controlled-potential electrolytic studies ranging −0.3 to −0.2 V in reaction solutions, current flows during electrolyses decreased quickly with time, except when glucosamine was used as a substrate.Results from surface enhanced infrared adsorption (SEIRA) spectroscopic measurements at an evaporated gold electrode for the electrocatalytic oxidation of glucose in 0.1 mol dm−3 NaOH at −0.3 V and Gaussian simulated spectra indicated that the gluconic acid as a 2-electron oxidation product and/or its analogs adsorbed onto the gold surface. Electrochemical quartz crystal microbalance (EQCM) measurement results, along with surface adsorption results from surface poisoning at the gold electrode during electrolytic reactions, suggested that gluconic acid and/or its analogs adsorbed vertically onto electrode surfaces in a full monolayer packing-like conformation. In the case of the electro oxidation of glucosamine in 0.1 mol dm−3 NaOH at −0.2 V, the obtained SEIRA spectra and EQCM results, clearly indicated that the glucosaminic acid as a 2-oxidation glucosamine product did not strongly bind onto the gold electrode surface.  相似文献   

15.
Interdigitated nanoelectrode arrays with controlled electrode bandwidth and gap geometries ranging from 30 nm to 1 μm were fabricated on glass substrates by a planar process involving high resolution electron beam lithography and lift-off, and their characteristic electrochemical responses to an aqueous ferrocene derivative solution were examined using fundamental electrochemical techniques. Despite the comparatively large electrode area of electrode arrays containing 10 bands to a single band electrode, quasi-steady-state currents with high current density were obtained at a slow potential sweep rate in cyclic voltammograms of ferrocene derivative since the lateral dimension of the nanoelectrode arrays was considerably less than the scale of the diffusion layer of redox species. Additionally, it was demonstrated that the electrode thickness influenced limiting currents of voltammograms in the case of nanoelectrode arrays. In generation-collection mode experiments, furthermore, a collection efficiency as high as ∼99% was attained by 100 nm wide electrode arrays with a gap dimension of 30 nm.  相似文献   

16.
A room temperature ionic liquid (RTIL) modified carbon paste electrode was constructed based on the substitute of paraffin with 1-butyl-3-methyl-imidazolium hexafluorophosphate (BMIMPF6) as binder for carbon paste. Direct electrochemistry and electrocatalytic behaviors of hemoglobin (Hb) entrapped in the sodium alginate (SA) hydrogel film on the surface of this carbon ionic liquid electrode (CILE) were investigated. The presence of IL in the CILE increased the electron transfer rate and provided a biocompatible interface. Hb remained its bioactivity on the surface of CILE and the SA/Hb modified electrode showed a pair of well-defined, quasi-reversible cyclic voltammetric peaks with the apparent standard potential (E0′) at about −0.344 V (vs. SCE) in pH 7.0 Britton–Robinson (B–R) buffer solution, which was attributed to the Hb Fe(III)/Fe(II) redox couple. UV–Vis absorption spectra indicated that heme microenvironment of Hb in SA film was similar to its native status. Hb showed a thin-layer electrochemical behavior in the SA film with the direct electron transfer achieved on CILE without the help of electron mediator. Electrochemical investigation indicated that Hb took place one proton with one electron electrode process and the average surface coverage of Hb in the SA film was 3.2 × 10−10 mol/cm2. The immobilized Hb showed excellent electrocatalytic responses to the reduction of H2O2 and nitrite.  相似文献   

17.
《Vibrational Spectroscopy》2010,52(2):238-247
The redox dye Neutral red (NR), adsorbed and electropolymerized at a roughened gold electrode, has been studied by Raman spectroscopy at λex of 676.4 nm in an electrochemical cell. Spectral bands have been assigned based on density functional theory (DFT) calculations. The number and position of the bands, as well as their intensity depend on electrode potential, allowing one to discern different redox forms of NR or its polymer. The observed changes in band positions and intensities have been analyzed. Electrooxidation of hydroquinone and ascorbic acid at a gold electrode modified with adsorbed or electropolymerized layer of NR has been studied with in situ Raman spectroelectrochemical technique. During electrooxidation of solution species, NR layer contains both oxidized and reduced forms of this modifier. It has been shown that the relative content of a reduced form of NR at electrode surface increases with increasing concentration of any of oxidizable species used. It has been concluded that anodic oxidation of ascorbic acid or hydroquinone at NR or polyNR modified electrode proceeds within the modifier layer rather than at a modifier/electrolyte interface. In this respect, electrooxidation follows a redox mechanism.  相似文献   

18.
We investigate the nature of bonding and charge states in (U1−yCey)O2 (y = 0.0, 0.2, 0.4, 0.6, 0.8 and 1.0) by Raman spectroscopy. Raman spectrum of UO2 exhibits two prominent bands below 1000 cm−1, a F2g mode at 446 cm−1 and a F1u LO mode at 578 cm−1. As y is increased from 0 to 0.6, the F1u exhibits a large blue shift of 90 cm−1, and from y = 0.6 to 1.0, a red shift of 54 cm−1. We show that our results can be interpreted as arising from anisotropic compression/relaxation of the lattice under Ce substitution and this can give an indication of its charge states. Alternate interpretations have been given in the literature on the effect of substituents and dopants to the Raman spectra of UO2 and CeO2. The present interpretation of chemical stress effects can be taken as another plausible explanation.  相似文献   

19.
Molecular speciation of organic compounds in solution is essential for the understanding of ionic complexation. The Raman technique was chosen because it allows the identification of compounds in different states, and it can give information about the molecular geometry from the analysis of the vibrational spectra. The effect of pH on organic compounds can give information about the ionisation of molecule species. In this study the ionisation steps of salicylic acid and paracetamol have been studied by means of potentiometry coupled with Raman spectroscopy at 30.0 °C in a solution of ionic strength 0.96 mol dm?3 (KNO3) and 0.04 mol dm?3 (HNO3). The protonation and deprotonation behaviour of the molecules were studied in different pH regions. The abundance of the three different species in the Raman spectra of aqueous salicylic acid have been identified satisfactorily, characterised, and determined by numeric treatment of the data using a multiwavelength curve-fitting program and confirmed with the observed spectral information.  相似文献   

20.
A novel amperometric NADH sensor was presented based on a Nile blue A (NB)/ordered mesoporous carbon (OMC) composite (NB/OMC) electrode. Cyclic voltammetric tests revealed the NB/OMC displayed a new well defined redox couple in the potential range of ?250 to 50 mV in pH 6.85 phosphate buffer. Interestingly, we found that only the new redox couple exhibited significant catalytic activity towards the oxidation of NADH. Under a lower operation potential of ?0.1 V, NADH could be linearly detected up to 350 μM with an extremely lower detection limit of 1.2 μM (S/N = 3).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号