共查询到10条相似文献,搜索用时 15 毫秒
1.
本文研究纵向数据下非参数部分带有测量误差的部分线性变系数模型的估计.利用B样条函数近似模型中的变系数函数,构造偏差修正的二次推断函数,得到模型中未知参数和变系数函数的估计.证明变系数函数估计量的相合性和参数估计量的渐近正态性.数值模拟和实例分析结果表明所提估计方法在有限样本下的有效性. 相似文献
2.
本文主要研究纵向数据下变系数测量误差模型的估计问题.利用B样条方法逼近模型中未知的变系数,构造关于B样条系数的二次推断函数来处理未知的个体内相关和测量误差,得到变系数的二次推断函数估计,建立估计方法和结果的渐近性质.数值模拟结果显示本文提出的估计方法具有一定的实用价值. 相似文献
3.
基于纵向数据研究非参数模型y=f(t)+ε,其中f(·)为未知平滑函数,ε为零均值随机误差项.利用截断幂函数基对f(·)进行基函数展开近似,并且结合惩罚样条的方法构造关于基函数系数的惩罚修正二次推断函数.然后利用割线法迭代得到基函数系数估计的数值解,从而得到未知平滑函数的估计.理论证明,应用此方法所得到的基函数系数估计具有相合性和渐近正态性.最后通过数值方法得到了较好的拟合结果. 相似文献
4.
5.
本文考虑了纵向数据线性EV模型的变量选择.基于二次推断函数方法和压缩方法的思想提出了一种新的偏差校正的变量选择方法.在选择适当的调整参数下,我们证明了所得到的估计量的相合性和渐近正态性.最后通过模拟研究验证了所提出的变量选择方法的有限样本性质. 相似文献
6.
对纵向数据的部分线性模型,通常的做法是用样条方法或者核方法逼近非参数部分,然后再用广义估计方程的估计方法去估计参数部分.本文使用P-样条拟合非参数函数,对不同的矩条件用不同的广义矩方法对模型的参数和非参数进行估计,并且给出了估计量的大样本性质;并用计算机模拟和实例证明了当模型中存在不同的矩条件时,采用不同的惩罚广义矩方法可以显著地提高估计精度. 相似文献
7.
具有较强解释力和灵活性的部分线性可加面板数据模型在各学科领域应用广泛.针对个体内存在相关结构的固定效应部分线性可加面板数据模型,本文在结合幂样条函数和最小二乘虚拟变量(LSDV)法的基础上,利用惩罚二次推断函数(PQIF)法对模型进行估计,在一定的正则条件下,证明了参数估计的渐近正态性和非参数估计的收敛性,Monte Carlo数值模拟显示所述估计方法具有良好的有限样本表现,同时,我们还将估计技术应用于实际数据分析中. 相似文献
8.
单指标面板模型已广泛应用于各学科领域的研究中,其估计方法较为丰富,然而鲜有估计方法将个体内的相关性考虑在内.基于此,本文研究了一类个体内存在相关性的固定效应部分线性单指标面板模型,采用惩罚二次推断函数法和LSDV法相结合的方法对模型进行估计,证明了所得估计量的一致性和渐近正态性.Monte Carlo模拟结果显示其具有... 相似文献
9.
考虑纵向数据下部分线性模型,研究了回归系数和基准函数的经验似然推断,证明了所提出的经验对数似然比渐近于卡方分布,由此构造了相应兴趣参数的置信域和区间. 此外,利用经验似然比函数得到了回归系数和基准函数的最大经验似然估计,并且证明了所得估计量的渐近正态性.模拟研究比较了经验似然与正态逼近方法的有限样本性质,并进行了案例分析. 相似文献