首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
简化的溶胶凝胶法合成LiMn2-xLaxO4及电性能研究   总被引:1,自引:0,他引:1  
采用以水溶液作为反应介质的简化的溶胶凝胶法制备了LiMn2O4和稀土La掺杂的LiMn1.98La0.02O4粉体材料, 此方法工艺简单, 容易控制, 制备周期短. 利用XRD, SEM对材料粉体进行结构形态表征, 并以合成的材料为正极活性材料测试其充放电性能、循环伏安性能、 电化学阻抗谱性能. 实验结果表明: 材料LiMn2O4和LiMn1.98La0.02O4具有较好的尖晶石结构, 且颗粒分布均匀, 掺杂La的材料循环性能有较大改善. 以LiMn2O4为正极活性物质的扣式电池首次放电比容量129.38 mAh · g-1, 循环20次后容量保持在94%, 以LiMn1.98La0.02O4为正极活性物质的扣式电池首次放电比容量106.77 mAh · g-1, 循环20此后容量保持在96.2%.  相似文献   

2.
以蔗糖为碳源,采用固相法合成了C改性的Li4Ti5O12材料.XRD衍射分析表明,C的引入没有改变Li4Ti5O12的尖品石结构,且缓解了颗粒间的团聚,并以初始蔗糖含量为10%(by mass)样品的电化学性能最佳.0.2C放电倍率下首次放电比容量达179.1mAh/g,在2C和3C倍率下首次放电比容量仍达143.8mAh/g和129.4mAh/g.循环伏安和电化学阻抗测试显示改性后的Li4Ti5O12材料电极极化程度较小,并且具有较小的电极反应阻抗.  相似文献   

3.
贺勇  唐子龙  张中太 《物理化学学报》2010,26(11):2962-2966
限制纳米电极材料倍率性能的一个重要因素是,在大电流下充放电时,纳米结构可能坍塌,造成容量迅速衰减.通过异价离子的掺杂或第二相的负载有可能弥补纳米材料的这一缺陷.本文以含有Cr2O3的锐钛矿TiO2为原料,通过超声化学-水热法,制备了负载Cr2O3的H2Ti2O5·H2O纳米管.采用X射线衍射(XRD)和透射电镜(TEM)对制得的H2Ti2O5·H2O/Cr2O3纳米管的晶体结构和微观形貌进行了表征和分析.恒流充放电测试显示,H2Ti2O5·H2O/Cr2O3(5%(w,质量分数))纳米管作为锂离子电池阳极材料具有优异的循环稳定性及倍率性能.在150mA·g-1的电流密度下,H2Ti2O5·H2O/Cr2O3纳米管的首次放电容量达到288mAh·g-1;120次循环后,充放电容量仍保持在145mAh·g-1.在1500mA·g-1的电流密度下,首次放电容量为178mAh·g-1;600次循环后,充放电容量保持在80mAh·g-1以上;继续在150mA·g-1电流密度下充放电30个循环,充放电容量达到155mAh·g-1,显示出充放电容量的可回复性.循环伏安测试结果表明,H2Ti2O5·H2O/Cr2O3纳米管的充放电过程由法拉第赝电容反应控制.该一维纳米结构在锂离子电池和非对称电容器领域显示出良好的应用前景.  相似文献   

4.
采用水合氧化钛溶胶为原料, 多孔炭为模板剂, 设计制备了一种新型准纳米晶锂钛复合氧化物, 并用SEM、XRD、恒流充放电及交流阻抗测试表征了材料的形貌、结构和电化学性能. 结果表明, 该氧化物晶粒尺寸约200 nm, 为典型的尖晶石Li4Ti5O12结构. 在0.5C(1C=0.2 mA·cm-2)电流条件下的首次嵌脱锂效率为99.8%, 嵌脱锂电位平坦, 可逆容量为117 mAh·g-1; 当电流从0.5C增至5C时, 其可逆嵌锂容量仍在100 mAh·g-1以上, 容量保持率大于86%, 倍率充放电性能优异. 交流阻抗测试结果表明, 模板剂多孔炭的应用使合成的尖晶石Li4Ti5O12具有更佳的导电性能, 且多孔特征明显.  相似文献   

5.
锂离子电池负极材料Li_(4-x)K_xTi_5O_(12)结构和电化学性能   总被引:1,自引:0,他引:1  
采用固相反应的方法制备了尖晶石型Li4Ti5O12和K掺杂Li4-xKxTi5O12(x=0.02,0.04,0.06)。通过XRD、SEM、BET等对制备材料进行了分析。结果表明,K掺杂没有影响立方尖晶石型Li4Ti5O12的合成,同时也没有改变Li4Ti5O12的电化学反应过程。K掺杂Li4-xKxTi5O12具有比Li4Ti5O12小的颗粒粒径和比Li4Ti5O12大的比表面积、孔容积。适量的K掺杂能够明显改善Li4Ti5O12的电化学性能,尤其是倍率性能,但是过多的K掺杂却不利于材料电化学性能的提高。研究表明,Li3.96K0.04Ti5O12体现了相对较好的倍率性能和循环稳定性。0.5C下,首次放电比容量为161mAh·g-1,3.0和5.0C下,容量保持分别为138和121mAh·g-1。3.0C下,200次循环后容量保持为137mAh·g-1。  相似文献   

6.
通过电化学沉积方法在三维结构泡沫镍基体上沉积金属钴层, 利用固相氧化方法制备了三维结构泡沫Co3O4负极. XRD和SEM结果显示, 电化学沉积制备得到具有纳米结构的金属钴层, 经固相氧化处理, 在泡沫镍基体表面形成了Co3O4微米级的致密活性氧化层. 通过充放电和循环伏安以及电化学阻抗等方法研究了电极的电化学性能, 结果表明, 当放电电位区间为0.05~3.2 V时, 三维泡沫Co3O4于0.2 C倍率下充放电, 初始容量损失为29%, 经50次循环后, 质量比容量为824 mA·h/g, 三维泡沫结构提高了Co3O4电极的循环容量保持性能和倍率性能.  相似文献   

7.
锂钛复合氧化物锂离子电池负极材料的研究   总被引:17,自引:0,他引:17  
杨晓燕  华寿南  张树永 《电化学》2000,6(3):350-356
采用 3种化学方法合成锂钛复合氧化物 .应用X -射线衍射分析对其结构进行表征以及电化学性能测试 ,结果表明 :由Li2 CO3、TiO2 高温合成的锂钛复合氧化物为尖晶石结构的Li4Ti5 O12 .Li4Ti5 O12 电极在 1 .5V左右有一放电平台 ,充放电可逆性良好 ,即充电电压平台与此接近 ,且电极的比容量较大 ,循环性能良好 .以 0 .30mA·cm- 2 充放电时 ,首次放电容量可达 30 0mAh·g- 1,可逆比容量为 1 0 0mAh·g- 1,经多次充放电循环后 ,其结构仍保持稳定性 .试验电池测试表明 ,Li4Ti5 O12 可选作Li4Ti5 O12 /LiCoO2 锂离子电池的负极材料 .  相似文献   

8.
以乙酰丙酮(ACAC)螯合剂、聚乙二醇(PEG)为分散剂,采用溶胶-凝胶法合成了尖晶石型Li4Ti5O12/TiN材料.考察了TiN膜对尖晶石型Li4Ti5O12锂离子电池负极材料电化学性能的影响.利用X射线光电子能谱(XPS)对Li4Ti5O12表面的TiN膜进行了分析.X射线衍射(XRD)和扫描电子显微镜(SEM)分析表明,Li4Ti5O12/TiN材料为结晶良好的亚微米纯相尖晶石型钛酸锂.电化学性能测试表明,该材料的首次放电比容量为173.0mAh·g-1,并且具有良好的循环性能,以0.2C、1C、2C、5C倍率放电进行测试,10次循环后比容量分别为170.6、147.6、135.6、111.0 mAh·g-1,较之表面无TiN膜的钛酸锂材料表现出更好的倍率特性.循环伏安曲线(CV),交流阻抗图谱(EIS)进一步论证了TiN膜改善了尖晶石型Li4Ti5O12锂离子电池负极材料的电化学性能.  相似文献   

9.
吴玥  刘兴泉  张峥  赵红远 《物理化学学报》2014,30(12):2283-2290
以氢氧化锂、乙酸锰、硝酸镁和钛酸丁酯为原料,以柠檬酸为螯合剂,采用溶胶-凝胶法制备了二价镁离子与四价钛离子等摩尔共掺杂的尖晶石型锂离子电池正极材料Li Mn1.9Mg0.05Ti0.05O4.采用热重分析(TGA),X射线衍射(XRD),扫描电子显微镜(SEM),透射电子显微镜(TEM)和电化学性能测试(包括循环伏安(CV)和电化学交流阻抗谱(EIS)测试)对所得样品的结构、形貌及电化学性能进行了表征.结果表明:780°C下煅烧12 h得到了颗粒均匀细小的尖晶石型结构的Li Mn1.9Mg0.05Ti0.05O4材料,该材料具有良好的电化学性能,在室温下以0.5C倍率充放电,在4.35-3.30 V电位范围内放电比容量达到126.8 m Ah·g-1,循环50次后放电比容量仍为118.5m Ah·g-1,容量保持率为93.5%.在55°C高温下循环30次后的放电比容量为111.9 m Ah·g-1,容量保持率达到91.9%,远远高于未掺杂的Li Mn2O4的容量保存率.二价镁离子与四价钛离子等摩尔共掺杂Li Mn2O4,改善了尖晶石锰酸锂的电子导电和离子导电性能,使其倍率性能和高温性能都得到了明显的提高.  相似文献   

10.
通过共沉淀法与固相法相结合制备了掺锌的高稳定性Li(Ni1/3Co1/3Mn1/3)1-xZnxO2(x=0,0.02,0.05)正极材料.循环伏安(CV)曲线表明Zn掺杂使氧化峰与还原峰的电势差减小到0.09 V,电化学阻抗谱(EIS)曲线表明Zn掺杂使电极的阻抗从266Ω减小到102Ω. Li+嵌入扩散系数从1.20×10-11 cm2·s-1增大到2.54×10-11 cm2· s-1. Li(Ni1/3Co1/3Mn1/3)0.98Zn0.02O2正极材料以0.3C充放电在较高的截止电压(4.6 V)下比其他两种材料的电化学循环性能更稳定,其第二周的放电比容量为176.2 mAh·g-1,室温下循环100周后容量几乎没衰减;高温(55°C)下充放电循环100周,其放电比容量平均每周仅衰减0.20%,远小于其他两种正极材料(LiNi1/3Co1/3Mn1/3O2平均每周衰减0.54%;Li(Ni1/3Co1/3Mn1/3)0.95Zn0.05O2平均每周衰减0.38%). Li(Ni1/3Co1/3Mn1/3)0.98Zn0.02O2正极材料以3C充放电时其放电比容量可达142 mAh·g-1,高于其他两种正极材料.电化学稳定性的提高归因于Zn掺杂后减小了电极的极化和阻抗,增大了锂离子扩散系数  相似文献   

11.
刘黎  田方华  王先友  周萌 《物理化学学报》2011,27(11):2600-2604
采用低温固相法合成了具有纳米结构的LiV3O8材料.扫描电子显微镜(SEM)及透射电子显微镜(TEM)测试显示该材料具有纳米结构.X射线衍射(XRD)表明该材料属于单斜晶系,P21Im空间群.并采用循环伏安法(CV)及电化学阻抗谱图测试对该材料在1、2 mol·L-1Li2SO4水溶液及饱和Li2SO4水溶液中的电化学行为进行了研究.结果表明,LiV3O8在饱和Li2SO4水溶液中具有最好的电化学性能.以LiV3O8作为负极材料,LiNi1/3Co1/3Mn1/3O2作为正极材料,饱和Li2SO4水溶液作为电解液组成了水性锂离子电池,进行恒流充放电测试,结果表明,在0.5C(1C=300 mA·g-1)的充放电倍率下,该水性锂离子电池的首次放电比容量为95.2 mAh·g-1,循环100次后仍具有37.0 mAh·g-1的放电比容量.  相似文献   

12.
用固相法分别在氧气和空气气氛下合成了层状锂离子电池正极材料LiNi0.5Mn0.5O2, 采用X射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)、电化学阻抗谱(EIS)及充放电性能测试对其结构、形貌和电化学性质进行表征, 用Rietveld精修计算晶体结构中的Li/Ni混排率, 研究了混排率与电化学性能的关系. 结果显示, 在不同的焙烧气氛下均能合成出纯相和结晶性良好的LiNi0.5Mn0.5O2, 但两种材料在电化学性能上存在一定的差异. 氧气气氛下焙烧合成的材料在首次放电容量, 循环稳定性方面均优于空气气氛下合成的材料. 在0.1C充放电条件下氧气气氛下焙烧得到的LiNi0.5Mn0.5O2材料首次放电容量达到178 mAh·g-1, 充放电循环50圈后容量为165 mAh·g-1, 容量保持率为92.7%; 而在空气气氛下焙烧得到的LiNi0.5Mn0.5O2材料首次放电容量为164 mAh·g-1, 充放电循环50圈后容量为137 mAh·g-1, 容量保持率为83.5%. 氧气气氛下合成的材料具有较优的电化学性能可归因于氧气气氛下焙烧合成的LiNi0.5Mn0.5O2具有较小的Li/Ni混排率.  相似文献   

13.
Ti、Mg离子复合掺杂对LiNi0.4Co0.2Mn0.4O2性能的影响   总被引:2,自引:0,他引:2  
采用SEM、XRD、恒电流充放电、交流阻抗谱等方法研究了钛镁离子复合掺杂对LiNi0.4Co0.2Mn0.4O2的结构及其电化学性能的影响. 结果表明材料的XRD图谱中部分特征峰的强度比值有较大的变化. 1%(摩尔分数) 的Ti、Mg离子复合掺杂能显著地改善LiNi0.4Co0.2Mn0.4O2的倍率放电能力, 平台保持能力和高倍率下的循环性能. 交流阻抗谱表明钛镁离子掺杂抑制了LiNi0.4Co0.2Mn0.4O2在高放电倍率下循环的电化学反应阻抗Rct的增加. 采用几种不同价态的金属离子复合掺杂是改善嵌锂的镍钴锰系金属氧化物的倍率放电能力的有效途径.  相似文献   

14.
纳米微晶TiO2合成Li4Ti5O12及其嵌锂行为   总被引:10,自引:1,他引:10  
用溶胶-凝胶法并经热处理制备不同形态和晶体尺寸的TiO2,分别与Li2CO3高温固相反应生成锂钛复合氧化物,经电化学测试发现,用300 ℃热处理所得纳米微晶TiO2制备的Li4Ti5O12具有良好的嵌锂性能,其可逆比容量大于95 mA•h•g-1,充放电效率近100%,循环性能良好,电压平台平稳,在嵌锂至容量≥85%或脱锂至容量≥90%时均有明显的电压变化,可用作锂离子电池负极材料.  相似文献   

15.
由半固相法制得锂离子电池负极材料Li4Ti5O12,并研究了Li4Ti5O12的碳包覆改性.采用XRD、SEM、TEM以及HRTEM观察和分析产物的相结构与形貌.采用恒流充放电、循环伏安法和交流阻抗技术测试了材料的电化学性质.结果表明,Li4Ti5O12因颗粒团聚电化学性能严重下降,该电极在0.1C和0.5C首周期放电容量分别为121.7和87.6 mAh·g-1;碳包覆Li4Ti5O12/C材料呈球形分布,能抑制颗粒团聚,该电极倍率<0.5C时的放电比容量大于180 mAh·g-1,超过Li4Ti5O12的理论放电比容量(175 mAh·g-1);在1C、5C和10C倍率下,其容量仍保持在136、79.9和58.3 mAh·g-1,碳包覆改性材料具有优异的循环寿命和高倍率性能.  相似文献   

16.
Ti, F复合掺杂改进LiNi1/3Co1/3Mn1/3O2正极材料的电化学性能   总被引:5,自引:0,他引:5  
采用复合离子掺杂技术对LiNi1/3Co1/3Mn1/3O2进行改性, 并对材料的结构及电化学性能进行了考察.  相似文献   

17.
Spinel lithium titanate (Li(4)Ti(5)O(12), LTO) is a promising anode material for a lithium ion battery because of its excellent properties such as high rate charge-discharge capability and life cycle stability, which were understood from the viewpoint of bulk properties such as small lattice volume changes by lithium insertion. However, the detailed surface reaction of lithium insertion and extraction has not yet been studied despite its importance to understand the mechanism of an electrochemical reaction. In this paper, we apply both atomic force microscopy (AFM) and transmission electron microscopy (TEM) to investigate the changes in the atomic and electronic structures of the Li(4)Ti(5)O(12) surface during the charge-discharged (lithium insertion and extraction) processes. The AFM observation revealed that irreversible structural changes of an atomically flat Li(4)Ti(5)O(12) surface occurs at the early stage of the first lithium insertion process, which induces the reduction of charge transfer resistance at the electrolyte/Li(4)Ti(5)O(12) interface. The TEM observation clarified that cubic rock-salt crystal layers with a half lattice size of the original spinel structure are epitaxially formed after the first charge-discharge cycle. Electron energy loss spectroscopy (EELS) observation revealed that the formed surface layer should be α-Li(2)TiO(3). Although the transformation of Li(4)Ti(5)O(12) to Li(7)Ti(5)O(12) is well-known as the lithium insertion reaction of the bulk phase, the generation of surface product layers should be inevitable in real charge-discharge processes and may play an effective role in the stable electrode performance as a solid-electrolyte interphase (SEI).  相似文献   

18.
采用固相法合成了钛离子掺杂LiFe0.6Mn0.4PO4/C正极材料.通过X射线衍射(XRD)、扫描电镜(SEM)以及电化学测试,对合成材料的结构、形貌和电化学性能进行了表征.结果表明:钛离子掺杂未影响材料的晶型结构,但显著改善了材料的电化学性能;Li(Fe0.6Mn0.4)0.96Ti0.02PO4/C材料表现出优异的倍率性能,0.1C倍率下其比容量为160.3mAh.g-1;在10C倍率下,比容量为134.7mAh.g-1;特别是在20C高倍率下仍然具有124.4mAh.g-1的放电比容量.电化学交流阻抗谱(EIS)和循环伏安(CV)测试结果说明,通过钛离子掺杂导致材料阻抗和极化的减少是材料倍率性能改善的主要原因.  相似文献   

19.
尖晶石LiMn2O4中锂离子嵌入脱出过程的电化学阻抗谱研究   总被引:1,自引:0,他引:1  
庄全超  魏涛  魏国祯  董全峰  孙世刚 《化学学报》2009,67(19):2184-2192
运用电化学阻抗谱(EIS)研究了尖晶石LiMn2O4电极的首次充放电过程. 发现EIS谱高频区域拉长压扁的半圆是由两个半圆相互重叠而成的, 分别归属于与锂离子通过固体电解质相界面膜(SEI膜)的迁移和与尖晶石LiMn2O4材料的电子电导率相关的特征. 通过选取适当的等效电路, 对实验所得的电化学阻抗谱数据进行拟合, 获得尖晶石LiMn2O4电极首次充放电过程中SEI膜电阻、电子电阻和电荷传递电阻等随电极极化电位变化的规律. 根据研究结果提出了嵌锂物理机制模型.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号