首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The photoluminescence properties and energy transfer of the Eu(2+) and Mn(2+) co-doped Sr(3)Y(PO(4))(3) phosphors are investigated in detail. Two main emission bands attributed to the Eu(2+) and Mn(2+) ions are observed under UV light excitation via an efficient energy transfer process. When the Eu(2+) doping content is fixed, the emission chromaticity can be varied by simply adjusting the content of Mn(2+). The study of the behavior as a function of doping concentration indicates that the warm white-light can be obtained in a single host lattice. Furthermore, the analysis of the fluorescence decay curves based on the Inokuti-Hirayama theoretical model reveals that the dipole-quadrupole interaction is mainly responsible for the energy transfer mechanism from the Eu(2+) to Mn(2+) ions in the Sr(3)Y(PO(4))(3) phosphor. The developed phosphor exhibits a strong absorption in UV spectral region and white-light emission which may find utility as a single-component white-light-emitting UV-convertible phosphor in white LED devices.  相似文献   

2.
A series of Eu(2+) and Mn(2+) co-doped SrAl(2)B(2)O(7) phosphors were prepared by solid-state reaction method. X-ray powder diffraction (XRD) and photoluminescence excitation and emission were employed to characterize the phosphors. The results show that energy transfers between Eu(2+)and Mn(2+) ions. As the content of Ca(2+) ions in Ca(x)Sr(0.92-x)Al(2)B(2)O(7):Eu(2+)(0.06), Mn(2+)(0.02) phosphors increased, the CIE coordinates decreased and close to the white color standard mandated by the National Television Standard Committee (NTSC). Meanwhile, a white LED (light-emitting diode) was fabricated by combining the Ca(0.5)Sr(0.42)Al(2)B(2)O(7):Eu(2+)(0.06), Mn(2+)(0.02) phosphors with a 370 nm InGaN chip. The color coordinate of the fabricated white LED was also close to the white color standard, indicating that the Ca(0.5)Sr(0.42)Al(2)B(2)O(7):Eu(2+)(0.06), Mn(2+)(0.02) phosphor is a promising single-host phosphor that can be used in white LEDs.  相似文献   

3.
Eu(2+) singly and Eu(2+), Mn(2+) co-doped Sr(2)Mg(3)P(4)O(15) exhibit not only the well known blue emission band of Eu(2+) peaking at 448 nm but also a new band at 399 nm in violet. They are attributed to Eu(2+) on different Sr(2+) sites. The Eu(2+) for the violet band can transfer energy to the red emitting Mn(2+) more efficiently than Eu(2+) for the blue band. The new Eu(2+) band could enable Sr(2)Mg(3)P(4)O(15):Mn(2+), Eu(2+) to be a promising phosphor for enriching the red component of white LEDs.  相似文献   

4.
A red-emitting phosphor, Eu(3+)-doped Ca(9)LiGd(2/3)(PO(4))(7), was synthesized by the conventional high-temperature solid-state reaction. X-ray powder diffraction (XRD) analyses confirmed the pure crystalline phase of Whitlockite-type structure. The excitation spectra of Eu(3+) doped Ca(9)LiGd(2/3)(PO(4))(7) were measured in the VUV and UV region indicating an efficient energy transfer process from the host and Gd(3+) to Eu(3+) ions. Upon excitation with VUV and UV radiation, the phosphor showed strong red emission around 611 nm corresponding to the forced electric dipole (5)D(0)→(7)F(2) transition of Eu(3+) ions. The VUV- and UV-excited luminescence spectra of Ca(9)LiGd(2/3)(PO(4))(7):Eu(3+) together with the dependence of the integrated emission intensities on the doping levels were investigated. The Eu(3+) ions were investigated by a tunable laser as an excitation source. The excitation spectra of (7)F(0)→(5)D(0) transitions suggest that there are two families of inequivalent sites for Eu(3+) in this host. The concentration quenching and crystallographic site-occupancy of Eu(3+) ions in Ca(9)LiGd(2/3)(PO(4))(7) host were discussed on the basis of the site selective excitation and emission spectra, the luminescence decay and its crystal structure.  相似文献   

5.
WR Liu  CH Huang  CW Yeh  JC Tsai  YC Chiu  YT Yeh  RS Liu 《Inorganic chemistry》2012,51(18):9636-9641
Novel single-phased white light-emitting KCaY(PO(4))(2):Eu(2+),Mn(2+) phosphors for light-emitting diode (LED) applications were synthesized by conventional solid-state reaction. The emission hue could be controlled by tuning the Eu(2+)/Mn(2+) ratio via the energy transfer; the the emission hue of KCaY(PO(4))(2):Eu(2+),Mn(2+) varied from blue (0.1853, 0.2627) to white-light (0.3350, 0.3203) and eventually to purple (0.3919, 0.2867). The mechanism of energy transfer from a sensitizer Eu(2+) to an activator Mn(2+) in KCaY(PO(4))(2):Eu(2+),Mn(2+) phosphors was demonstrated to be an electric dipole-quadrupole interaction. Combining a NUV 405-nm chip and a white-emitting KCaY(PO(4))(2):1%Eu(2+),4%Mn(2+) phosphor produced a white-light NUV LED, demonstrating CIE chromaticity coordinates of (0.314, 0.329) and a color temperature of 6507 K.  相似文献   

6.
A novel europium (III) ternary complex, Eu(TPBDTFA)(3)Phen, was designed and synthesized. Photoluminescence measurements show that the energy absorbed by the organic ligands was efficiently transferred to the central Eu(3+) ions, and the complex exhibits strongly red emission due to the (5)D(0)-(7)F(j) transitions of Eu(3+) ions with appropriate CIE (Commission Internationale de l'Eclairage, International Commission on Illumination) chromaticity coordinates (x=0.66, y=0.33) under 310-420 nm light excitation. The luminescence quantum yield for the Eu(3+) complex is 0.18. Thermogravimetric analysis (TGA) confirms a high thermal stability of the complex with a decomposition temperature of 341 degrees C. All the characteristics indicate that the Eu(3+) complex is a highly efficient red phosphor suitable to be excited by near UV light. An intense red-emitting LED was fabricated by combining the mono-phosphor Eu(TPBDTFA)(3)Phen with a approximately 395 nm emitting InGaN chip.  相似文献   

7.
Ce(3+) and Eu(2+) singly doped and Ce(3+)/Eu(2+)-codoped Ca(7)Mg(SiO(4))(4) phosphors are synthesized by the conventional solid state reaction. The Ce(3+) activated sample exhibits intense blue emission under 350 nm excitation, the composition-optimized Ca(7)Mg(SiO(4))(4)?:?4%Ce(3+) shows better color purity than the commercial blue phosphor, BaMgAl(10)O(17)?:?Eu(2+) (BAM?:?Eu(2+)) and exhibits superior external quantum efficiency (65%). The Ca(7)Mg(SiO(4))(4)?:?Eu(2+) powder shows a broad emission band in the wavelength range of 400-600 nm with a maximum at about 500 nm. The strong excitation bands of the Ca(7)Mg(SiO(4))(4)?:?Eu(2+) in the wavelength range of 250-450 nm are favorable properties for applications as light-emitting-diode conversion phosphors. Furthermore, the energy transfer from the Ce(3+) to Eu(2+) ions is observed in the codoped samples, the resonance-type energy transfer is determined to be due to the dipole-dipole interaction mechanism and the critical distance is obtained through the spectral overlap approach and concentration quenching method.  相似文献   

8.
Xia Z  Zhuang J  Liao L 《Inorganic chemistry》2012,51(13):7202-7209
A novel red-emitting Ba(2)Tb(BO(3))(2)Cl:Eu phosphor possessing a broad excitation band in the near-ultraviolet (n-UV) region was synthesized by the solid-state reaction. Versatile Ba(2)Tb(BO(3))(2)Cl compound has a rigid open framework, which can offer two types of sites for various valence's cations to occupy, and the coexistence of Eu(2+)/Eu(3+) and the red-emitting luminescence from Eu(3+) with the aid of efficient energy transfer of Eu(2+)-Eu(3+)(Tb(3+)) and Tb(3+)-Eu(3+) have been investigated. Ba(2)Tb(BO(3))(2)Cl emits green emission with the main peak around 543 nm, which originates from (5)D(4) → (7)F(5) transition of Tb(3+). Ba(2)Tb(BO(3))(2)Cl:Eu shows bright red emission from Eu(3+) with peaks around 594, 612, and 624 nm under n-UV excitation (350-420 nm). The existence of Eu(2+) can be testified by the broad-band excitation spectrum, UV-vis reflectance spectrum, X-ray photoelectron spectrum, and Eu L(3)-edge X-ray absorption spectrum. Decay time and time-resolved luminescence measurements indicated that the interesting luminescence behavior should be ascribed to efficient energy transfer of Eu(2+)-Eu(3+)(Tb(3+)) and Tb(3+)-Eu(3+) in Ba(2)Tb(BO(3))(2)Cl:Eu phosphors.  相似文献   

9.
采用高温固相法制备了一种新型的红色荧光粉——Ca4GdO(BO3)3:Eu3+.研究了它在X射线、真空紫外和紫外激发下的发光性能,研究表明,样品无论是在X射线、真空紫外还是在紫外的激发条件下,样品都能发出很强的红光.它的主发射峰在610 nm,而且其它位置的发射峰都很弱;它很容易被254nm、172 nm和X射线所激发而发出很强的红光,因此是一种具有潜在应用价值的红色荧光粉.研究表明Gd3+离子与激活剂(Eu3+)存在着一种能量传递的过程,而这种能量的传递过程可能跟二次吸收有关.  相似文献   

10.
A new red emitting BaB2O4: Eu3+ phosphor was synthesized by solid-state reaction method. X-ray powder diffraction (XRD) analysis confirmed the monoclinic formation of BaB2O4. Field-emission scanning electron-microscopy (FE-SEM) observation indicated that the microstructure of the phosphor consisted of irregular grains with heavy agglomerate phenomena. Upon excitation with 394 nm light, the BaB2O4: Eu3+ phosphor shows bright red emissions with the highest photoluminescence (PL) intensity at 611 nm due to 5D0→7F2 transitions of Eu3+ ions. The CIE chromaticity coordinates are calculated from the emission spectrum to be x=0.64, y=0.35. The effects of the Eu3+ concentration on the PL were investigated. The results showed that the optimum concentration of Eu3+ in BaB2O4 host is 6 mol% and the dipole-dipole interaction plays the major role in the mechanism of concentration quenching of Eu3+ in BaB2O4: Eu3+ phosphor. The effect of charge compensation on the emission intensity was also studied. The charge compensations of Li+, Na+ and K+ anions all increased the luminescent intensity of BaB2O4: Eu3+. K+ anion gave the best improvement to enhance the intensity of the emission, indicating K+ is the optimal charge compensator. All properties show that this phosphor could serve as a potential candidate for application as a red phosphor for NUV chip LED.  相似文献   

11.
Eu(III)-doped Y(2)O(3) nanocrystals are prepared by microwave synthetic methods as spherical 6.4 ± 1.5 nm nanocrystals with a cubic crystal structure. The surface of the nanocrystal is passivated by acetylacetonate (acac) and HDA on the Y exposed facet of the nanocrystal. The presence of acac on the nanocrystal surface gives rise to a strong S(0) → S(1) (π → π*, acac) and acac → Ln(3+) ligand to metal charge transfer (LMCT) transitions at 270 and 370 nm, respectively, in the Eu:Y(2)O(3) nanocrystal. Excitation into the S(0) → S(1) (π → π*) or acac → Ln(3+) LMCT transition leads to the production of white light emission arising from efficient intramolecular energy transfer to the Y(2)O(3) oxygen vacancies and the Eu(III) Judd-Ofelt f-f transitions. The acac passivant is thermally stable below 400 °C, and its presence is evidenced by UV-vis absorption, FT-IR, and NMR measurements. The presence of the low-lying acac levels allows UV LED pumping of the solid phosphor, leading to high quantum efficiency (~19%) when pumped at 370 nm, high-quality white light color rendering (CIE coordinates 0.33 and 0.35), a high scotopic-to-photopic ratio (S/P = 2.21), and thermal stability. In a LED lighting package luminosities of 100 lm W(-1) were obtained, which are competitive with current commercial lighting technology. The use of the passivant to funnel energy to the lanthanide emitter via a molecular antenna effect represents a new paradigm for designing phosphors for LED-pumped white light.  相似文献   

12.
Luminescent perovskite nanosheets were prepared by exfoliation of single- or double-layered perovskite oxides, K2Ln2Ti3O10, KLnNb2O7, and RbLnTa2O7 (Ln: lanthanide ion). The thickness of the individual nanosheets corresponded to those of the perovskite block in the parent layered compounds. Intense red and green emissions were observed in aqueous solutions with Gd1.4Eu0.6Ti3O10- and La0.7Tb0.3Ta2O7-nanosheets, respectively, under UV illumination with energies greater than the corresponding host oxide band gap. The coincidence of the excitation spectrum and the band gap absorbance indicates that the visible emission results from energy transfer within the nanosheet. The red emission intensity of the Gd1.4Eu0.6Ti3O10-nanosheets was much stronger than that of the La0.90Eu0.05Nb2O7-nanosheets reported previously. The strong emission intensity is a result of a two-step energy transfer cascade within the nanosheet from the Ti-O network to Gd(3+) and then to Eu(3+). The emission intensities of the Gd1.4Eu0.6Ti3O10- and La0.7Tb0.3Ta2O7-nanosheets can be modulated by applying a magnetic field (1.3-1.4 T), which brings about a change in orientation of the nanosheets in solution. The emission intensities increased when the excitation light and the magnetic field directions were perpendicular to each other, and they decreased when the excitation and magnetic field were collinear and mutually perpendicular to the direction of detection of the emitted light.  相似文献   

13.
Huang CH  Chen TM 《Inorganic chemistry》2011,50(12):5725-5730
Eu(2+)-activated Sr(8)MgY(PO(4))(7) and Sr(8)MgLa(PO(4))(7) yellow-emitting phosphors were successfully synthesized by solid-state reactions for applications in excellent color rendering index white light-emitting diodes (LEDs). The excitation and reflectance spectra of these phosphors show broad band excitation and absorption in the 250-450 nm near-ultraviolet region, which is ascribed to the 4f(7) → 4f(6)5d(1) transitions of Eu(2+). Therefore, these phosphors meet the application requirements for near-UV LED chips. Upon excitation at 400 nm, the Sr(8)MgY(PO(4))(7):Eu(2+) and Sr(8)MgLa(PO(4))(7):Eu(2+) phosphors exhibit strong yellow emissions centered at 518, 610, and 611 nm with better thermal stability than (Ba,Sr)(2)SiO(4) (570 nm) commodity phosphors. The composition-optimized concentrations of Eu(2+) in Sr(8)MgLa(PO(4))(7):Eu(2+) and Sr(8)MgY(PO(4))(7):Eu(2+) phosphors were determined to be 0.01 and 0.03 mol, respectively. A warm white-light near-UV LED was fabricated using a near-UV 400 nm chip pumped by a phosphor blend of blue-emitting BaMgAl(10)O(17):Eu(2+) and yellow-emitting Sr(8)MgY(PO(4))(7):0.01Eu(2+) or Sr(8)MgLa(PO(4))(7):0.03Eu(2+), driven by a 350 mA current. The Sr(8)MgY(PO(4))(7):0.01Eu(2+) and Sr(8)MgLa(PO(4))(7):0.03Eu(2+) containing LEDs produced a white light with Commission International de I'Eclairage (CIE) chromaticity coordinates of (0.348, 0.357) and (0.365, 0.328), warm correlated color temperatures of 4705 and 4100 K, and excellent color rendering indices of 95.375 and 91.75, respectively.  相似文献   

14.
Ca(8)MgLa(PO(4))(7):Ce(3+),Mn(2+) phosphors have been prepared by a conventional solid state reaction under a weak reductive atmosphere. The crystal structure and photoluminescent properties were investigated. It was found that the red emission at 640nm originated from the (4)T(1)((4)G)→(6)A(1)((6)S) transition of Mn(2+) increases dramatically by a factor of 6.4 with the optimum Ce(3+) co-doping. The energy transfer from Ce(3+) to Mn(2+) was proposed to be resonance-type via an electric dipole-dipole mechanism and the energy transfer efficiency was also calculated by the relative emission intensity. With the broadband ultraviolet (UV) absorption of Ce(3+) and the suitable color coordinates, Ca(8)MgLa(PO(4))(7):Ce(3+),Mn(2+) phosphors might be a promising candidate as red phosphors in the field of UV-based white light-emitting diodes.  相似文献   

15.
Eu3+-doped Ca10Na(PO4)7 phosphors were successfully synthesized by solid-state reaction techniques. Their structures and photoluminescence characteristics were carefully studied. An efficient red emission under near-ultraviolet excitation is observed. The maximum intensity of luminescence was observed at the Eu3+ concentration around 9 mol%. The quadrupole-quadrupole interaction between Eu3+ ions is the dominant mechanism for concentration quenching of fluorescence emission from Eu3+ ions in Ca10-xNa(PO4)7:xEu3+. Due to the excitation spectrum is well coupled with near UV light, Ca10-xNa(PO4)7:xEu3+ phosphors have potential application as red phosphors in near UV chip-based white light emitting diodes.  相似文献   

16.
We developed a highly effective and self-sustaining route for synthesizing Sr(2)Si(5)N(8):Eu(2+) red-emitting phosphor particles for use in light emitting diodes (LEDs). The phosphors thus synthesized showed excellent emission characteristics under a blue excitation wavelength of 450 nm, had a uniform particle size distribution, and showed high performance in LED packages.  相似文献   

17.
用高温固相反应法合成了铌酸根NbO^3-4和Eu^3 共掺杂的正钽酸盐化合物Y1-xEuxTa1-yNbyO4,研究该体系中紫外光和X射线激发下的发光性能,研究表明,在紫外光激发下,YTaO4:Nb,Eu是一种比较有效的红色发光材料,激发能可以通过NbO^3 4离子传递给Eu^3 ,随钽酸盐中NbO^3-4基团浓度的增中,化合物的结构从M'型YTaO4变成褐钇铌型YNbO4结构,它的发光性质也随之改变。  相似文献   

18.
采用高温固相法合成了Ba(Y1-0.5x-yAly)2S4:xHo3+系列荧光粉。在465 nm蓝光激发下,荧光粉的发射光谱呈多谱带发射,主峰位于492、543和661 nm处,分别对应于Ho3+的5F3→5I8,(5S2,5F4)→5I8和5F5→5I8跃迁发射。研究了Ho3+和Al3+掺杂量对BaY2S4:Ho3+发光性能的影响。结果表明,随着Ho3+掺杂量的逐渐增大,荧光粉的发光颜色由绿色逐渐向红色转变;适量Al3+取代Y3+可以提高BaY2S4:Ho3+荧光粉的发光强度。荧光粉Ba(Y0.665Al0.3)2S4:0.07Ho3+在蓝光(465 nm)激发下发射黄光,是一种潜在的白光LED用黄色荧光粉。  相似文献   

19.
Xia Z  Wang X  Wang Y  Liao L  Jing X 《Inorganic chemistry》2011,50(20):10134-10142
A new family of chloroborate compounds, which was investigated from the viewpoint of rare earth ion activated phosphor materials, have been synthesized by a conventional high temperature solid-state reaction. The crystal structure and thermally stable luminescence of chloroborate phosphors Ba(2)Ln(BO(3))(2)Cl:Eu(2+) (Ln = Y, Gd, and Lu) have been reported in this paper. X-ray diffraction studies verify the successful isomorphic substitution for Ln(3+) sites in Ba(2)Ln(BO(3))(2)Cl by other smaller trivalent rare earth ions, such as Sm, Eu, Tb, Dy, Ho, Er, Tm, and Yb. The detailed structure information for Ba(2)Ln(BO(3))(2)Cl (Ln = Y, Gd, and Lu) by Rietveld analysis reveals that they all crystallize in a monoclinic P2(1)/m space group. These compounds display interesting and tunable photoluminescence (PL) properties after Eu(2+)-doping. Ba(2)Ln(BO(3))(2)Cl:Eu(2+) phosphors exhibit bluish-green/greenish-yellow light with peak wavelengths at 526, 548, and 511 nm under 365 UV light excitation for Ba(2)Y(BO(3))(2)Cl:Eu(2+), Ba(2)Gd(BO(3))(2)Cl:Eu(2+), and Ba(2)Lu(BO(3))(2)Cl:Eu(2+), respectively. Furthermore, they possess a high thermal quenching temperature. With the increase of temperature, the emission bands show blue shifts with broadening bandwidths and slightly decreasing emission intensities. It is expected that this series of chloroborate phosphors can be used in white-light UV-LEDs as a good wavelength-conversion phosphor.  相似文献   

20.
Trivalent rare-earth (RE) ions (Eu(3+), Tb(3+) and Sm(3+)) activated multicolor emitting SrY(2)O(4) phosphors were synthesized by a sol-gel process. The structural and morphological studies were performed by the measurements of X-ray diffraction profiles and scanning electron microscope (SEM) images. The pure phase of SrY(2)O(4) appeared after annealing at 1300 °C and the doping of RE ions did not show any effect on the structural properties. From the SEM images, the closely packed particles were observed due to the roughness of each particle tip. The photoluminescence (PL) analysis of individual RE ions activated SrY(2)O(4) phosphors exhibits excellent emission properties in their respective regions. The Eu(3+) co-activated SrY(2)O(4):Tb(3+) phosphor creates different emissions by controlling the energy transfer from Tb(3+) to Eu(3+) ions. Based on the excitation wavelengths, multiple (green, orange and white) emissions were obtained by Sm(3+) ions co-activated with SrY(2)O(4):Tb(3+) phosphors. The decay measurements were carried out for analyzing the energy transfer efficiency and the possible ways of energy transfer from donor to acceptor. The cathodoluminescence properties of these phosphors show similar behavior as PL properties except the energy transfer process. The obtained results indicated that the energy transfer process was quite opposite to the PL properties. The calculated CIE chromaticity coordinates of RE ions activated SrY(2)O(4) phosphors confirmed the red, green, orange and white emissions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号