首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 37 毫秒
1.
The effect of doping of rare earth Pr3+ ion as a replacement of Sm3+ in Sm0.5Sr0.5MnO3 is investigated. Temperature dependent dc and ac magnetic susceptibility, resistivity, magnetoresistance measurements on chemically synthesized (Sm0.5−xPrx)Sr0.5MnO3 show various unusual features with doping level x=0.15. The frequency independent ferromagnetic to paramagnetic transition at higher temperature (∼191 K) followed by a frequency dependent reentrant magnetic transition at lower temperature (∼31 K) has been observed. The nature of this frequency dependent reentrant magnetic transition is described by a critical slowing down model of spin glasses. From non-linear ac susceptibility measurements it has been confirmed that the finite size ferromagnetic clusters are formed as a consequence of intrinsic phase separation, and undergo spin glass-like freezing below a certain temperature. There is an unusual observation of a 2nd harmonic peak in the non-linear ac susceptibility around this reentrant magnetic transition at low temperature (∼31 K). Arrott plots at 10 and 30 K confirm the existence of glassy ferromagnetism below this low temperature reentrant transition. Electronic- and magneto-transport measurements show a strong magnetic field—temperature history dependence and strong irreversibility with respect to the sweeping of magnetic field. These results are attributed to the effect of phase separation and kinetic arrest of the electronic phase in this phase separated manganite at low temperatures.  相似文献   

2.
Gold (Au) diffusion in superconducting Bi1.8Pb0.35Sr1.9Ca2.1Cu3Oy was investigated over the temperature range 500-800 °C by the energy dispersive X-ray fluorescence (EDXRF) technique. It is found that the Au diffusion coefficient decreases as the diffusion-annealing temperature decreases. The temperature dependences of Au diffusion coefficient in grains and over grain boundaries are described by the relations D1=6.7×10−5exp(−1.19 eV/kBT) and D2=9.7×10−4exp(−1.09 eV/kBT), respectively. The diffusion doping of Bi-2223 by Au causes a significant increase of the lattice parameter c by about 0.19%. For the Au-diffused samples, dc electrical resistivity and transport critical current density measurements indicated the critical transition temperature increased from 100 to 104 K and the critical current density increased from 40 to 125 A cm−2, in comparison with those of undoped samples. From scanning electron microscope (SEM) and X-ray diffraction (XRD) measurements it is observed that Au doping of the sample also improved the surface morphology and increased the ratio of the high-Tc phase to the low-Tc phase. The possible reasons for the observed improvement in microstructure and superconducting properties of the samples due to Au diffusion are also discussed.  相似文献   

3.
The compound (Me4P)2ZnBr4, a member of the β-K2SO4 structure class, undergoes a phase transition at 84°C from the room temperature space group P121/c1 to the parent Pmcn structure. The room temperature structure corresponds to a ferrodistortive transition of B1g symmetry at the zone center. At room temperature, the compound has lattice constants a=9.501(1), b=16.055(2), c=13.127(2) Å and β=90.43(1)°. For the high temperature phase, the orthorhombic cell has dimensions a=9.466(2), b=16.351(3) and c=13.284(2) Å. The structures consist of two crystallographically independent Me4P+ cations and the ZnBr42− anions. In the room temperature phase, all three ionic species show substantial displacement from the mirror plane perpendicular to the a-axis that exists in the high temperature phase, as well as rotations out of that plane. The thermal parameters of the cations are indicative of substantial librational motion. Measurements of lattice parameters have been made at 2-5°C intervals over the temperature range 40-140°C. The changes in the lattice constants appear continuous at Tc (within experimental limits) indicating that the phase transition is likely second-order. The a lattice constant shows an anomalous shortening as Tc is approached. Thermal expansion coefficients are calculated from this data. An application of Landau theory is used to derive the temperature dependencies of spontaneous shear strain and corresponding elastic stiffness constants associated with the primary order parameter.  相似文献   

4.
NH4H2PO4 (ADP) has been investigated by infrared spectroscopy, differential scanning calorimetry, thermogravimetric analysis and d.c. conductivity in the temperature range of 25–180° C. Sharp reversible changes were observed in the region from 400 to 500 cm?1 of the infrared spectra in the temperature range of 138–174° C. Similar and supportive data were obtained with DSC, TGA and DC conductivity measurements. The results clearly suggest a high temperature phase transition for ADP before its melting point.  相似文献   

5.
Crystal structure of the 4-methylpyridinium tetrachloroantimonate(III), [4-CH3C5H4NH][SbCl4], has been determined at 240 K by X-ray diffraction as monoclinic, space group, P21/n, Z=8. Differential scanning calorimetry and dilatometric studies indicate the presence of two reversible phase transitions of first order type, at 335/339 and 233/289 K (cooling/heating) with ΔS=0.68 and 2.2 J mol−1 K−1, respectively. Crystal dynamics is discussed on the basis of the temperature dependence of the 1H NMR spin-lattice relaxation time T1 and infrared spectroscopic studies. The low temperature phase transition at 233 K of an order-disorder type is interpreted in terms of a change in the motional state of the 4-methylpyridinium cations. The phase transition at 335 K, probably of a displacive type, is characterised by a complex mechanism involving the dynamics of both the cationic and anionic sublattice. The 1H NMR studies show that the low temperature phase III is characterised only by the dynamics of the CH3 groups.  相似文献   

6.
The antiferro- to paramagnetic phase transition of the weakly anisotropic compound MnF2 has been studied by means of heat capacity, magnetic susceptibility and thermal expansion measurements. The critical-point parameters associated with the specific heat indicate a transition according to the theoretical Ising-model. The temperature derivative of the parallel magnetic susceptibility times temperature (d(χ∥T)/dT) and the c-axis thermal expansion coefficient show a critical behaviour very similar to that of the specific heat. The influence of iron doping on the critical behaviour has been investigated by studies on Mn0.98Fe0.02F2. Specific heat and magnetic susceptibility measurements show an unexpectedly sharp transition although some rounding off is noticed as compared to pure MnF2.  相似文献   

7.
Electrical conductivity of ZrO2 doped with Pb3O4 has been measured at different temperatures for different molar ratios (x=0, 0.01, 0.02, 0.03, 0.04, 0.05 and 0.06). The conductivity increases due to migration of vacancies, created by doping. The conductivity increases with increase in temperature till 180 °C and thereby decreases due to collapse of the fluorite framework. A second rise in conductivity at higher temperatures beyond 500-618 °C is due to phase transition of ZrO2. DTA and X-ray powder diffraction were carried out for confirming doping effect and transition in ZrO2.The addition of Pb3O4 to ZrO2 shifted the phase transition of ZrO2 due to the interaction between Pb3O4 and ZrO2.  相似文献   

8.
A second order phase transition between the space groups D182h and D174hleads to the high temperature tetragonal phase of (CH3NH3)2MnCl4. Similar transitions to tetragonal phases exist also in the ethyl- and propyl-compounds. Transition temperature increase with an increasing carbon chain length. Very low ΔH- and ΔS-values are compatible with a transition model obtained from nuclear resonance experiments. Further thermoanalytical results bear evidence on the complex role of alkyl-ammonium groups.  相似文献   

9.
The angular variation of the EPR linewidths in single crystals of (C2H5NH3)2MnBr4 has been measured as a function of temperature. The angular dependence is well characterized by δH(θ) = a + b(3 cos2θ ? 1) + c(3 cos2θ ? 1)2. The temperature dependence of the expansion coefficients is reported, and the effect of critical point fluctuations near the Néel temperature as well as a linear temperature dependence at high temperature are observed. A sharp decrease in linewidths at 160°K is attributed to a structural phase transition. The Néel temperature is determined to be 46°K (± 1°) from linewidth measurements of a powder sample. The linewidths diverge exponentially near the Néel temperature with a critical point exponent of 1.5.  相似文献   

10.
The doping dependence of the Raman spectra of high quality La2−xSrxCu16,18O4 polycrystalline compounds has been investigated at low temperatures. It is shown that symmetry forbidden bands peaked at ∼150 cm−1, ∼280 cm−1, and ∼370 cm−1 are activated in the (xx/yy) polarization Raman spectra due to the local breaking of the inversion symmetry mainly at low temperatures and for doping concentrations for which the compound is superconducting. The apparent A1-character of the activated modes in the symmetry reduced phase indicates a reduction from the D2h to C2v or D2 crystal symmetries, which associates the observed modes to specific IR-active phonons with eigenvectors mainly along the c-axis. The temperature and doping dependence of this inversion symmetry breaking and the superconducting transition temperature are very similar, though the symmetry reduction occurs at significantly higher temperatures.  相似文献   

11.
Second order structural phase transitions in Alur6(ClO4)3 and Gaur6(ClO4)3 with Tc ~ 300 K are studied by means of ESR on single crystals doped with the analogous Cr(III) compound. The transitions are antiferrodistortive and of the displacive type, the displacements resulting from the condensation of a X2 mode (k = (01212)) of the ClO4 ions. The ESR parameters have the same temperature dependence as the order parameters and can be described by D and E~φ~. The space group describing the structure changes from S62 to S21, and the number of domains is multiplied by three. Above 300 K the crystals already consist of two domains, resulting from a ferrodistortive phase transition D3d6S62. The actual transition temperature of the latter phase transition lies at some temperature above the decomposition temperature of the crystals.  相似文献   

12.
Al-doped lithium manganese spinels, with starting composition Li1.02AlxMn1.98−xO4 (0.00<x≤0.06), are investigated to determine the influence of the Al3+ doping on the Jahn-Teller (J-T) cooperative transition temperature TJ-T. X-ray powder diffraction (XRPD), nuclear magnetic resonance, electron paramagnetic resonance, conductivity and magnetic susceptibility data are put into relation with the tetrahedral and octahedral occupancy fraction of the spinel sites and with the homogeneous distribution of the Al3+ ions in the spinel phase. It is observed that Al3+ may distribute between the two cationic sublattices. The J-T distortion, associated with a drop of conductivity near room temperature in the undoped sample, is shifted towards lower temperature by very low substitution. However, for x>0.04 TJ-T it increases with increasing x, as clearly evidenced in low temperature XRPD observations. A charge distribution model in the cationic sublattice, for Al substitution, is proposed to explain this peculiar behavior.  相似文献   

13.
The satellite NMR spectrum of 23Na in ammonium Rochelle salt (NaNH4C4H4O6 ? 4H2O) is investigated near the transition temperature. Each line in the paraelectric phase splits discontinuously into four lines at the transition temperature; this fact is compatible with the first-order phase transition and reveals the existence of the superstructure in the ferroelectric phase.  相似文献   

14.
Magnesium aluminum spinel (MgAl2O4) is a major constituent of the shallow upper mantle. It is of great geophysical importance to explore its physical properties under high pressure and temperature. The first-principle density functional theory (DFT) with the plane wave along with pseudopotential was employed to obtain the total energy for both Fd3m-MgAl2O4 and F4-3m-MgAl2O4, which was used to generate the Gibbs free energy as a function of temperature and pressure with the quasi-harmonic Debye model. It is found that the phase transition temperature from Fd3m-MgAl2O4 to F4-3m-MgAl2O4 is beyond 452.6 K in the pressure regime studied, which is consistent with the experiment. The phase transition temperature is related to pressure by a linear function, i.e. T=8.05P+452.6, which is the first equation of this kind to describe the phase transition Fd3m→F4-3m. The elastic constants, equation of states and thermodynamic properties of Fd3m-MgAl2O4 are also reported in this paper to make a complete study.  相似文献   

15.
Dielectric studies on copper doped derivatives of polycrystalline layered mixed alkali trititanate Na1.8K0.2Ti3O7 ceramics indicate that the losses are of mixed type and decrease on copper doping. However, the temperature dependent permittivity plots are characteristic of the diffuse nature of a possible ferroelectric phase transition and hence give indication of relaxor ferroelectric behaviour. From the EPR spectra, recorded at room temperature, it can be seen that the substitution of copper occurs at Ti4+ as preferred site with a divalent oxidation state (Cu2+) for all compositions. Also, copper doping enhances the transition temperature, which is indicative of the stabilization of the existing ferroelectric phase up higher temperatures. Besides bolstering electron hopping conduction, acceptor doping restrains the interlayer ionic conduction. Moreover, electron hopping (polaron) conduction is dominant over the lower temperature region, while interlayer ionic conduction prevails in the higher temperature region.  相似文献   

16.
A group theoretical analysis of the second-order structural phase transition in (CH3NH3)2MnCL4 at 394°K and of similar transitions in ethyl and propyl compounds (D174hD182h) was performed. The soft mode transforms according to the τx5-irreducible representation at the X-point of the Brillouin-zone boundary and its eigenvector is discussed. The transition is of the order-disorder type and is caused by a slowing down of the hindered rotation of NH3-groups. Knowing the symmetry of the order parameter, a thermodynamic potential expansion was constructed and expected anomalies in material constants around the transition temperature are briefly discussed. The high temperature phase transitions in analogous copper compounds are explained as a sequence D174hD182hD152h. The second of these phase transitions is driven by a soft mode transforming as the τY7-representation at the D182h Brillouin zone boundary.  相似文献   

17.
The dielectric properties of the [4-NH2C5H4NH] SbCl4 (abbreviated as 4-APCA) crystal were investigated under hydrostatic pressure up to 300 Mpa. The pressure-temperature phase diagram was given. The paraelectric-ferroelectric phase transition (II→III) temperature (Tc) increases linearly with increasing pressure with a slope dTc/dp=21×10−2 K/MPa. The pressure dependence of Curie-Weiss constants has been evaluated also. In the paraelectric phase (II) the Curie constant (C+) was pressure dependent whereas the C constant over the ferroelectric phase (III) was almost constant. The results are interpreted in terms of improper and displacive type phase transition model with a soft phonon at a zone boundary.  相似文献   

18.
Electrical impedance measurements of Na3H(SO4)2 were performed as a function of both temperature and frequency. The electrical conductivity and dielectric relaxation have been evaluated. The temperature dependence of electrical conductivity reveals that the sample crystals transformed to the fast ionic state in the high temperature phase. The dynamical disordering of hydrogen and sodium atoms and the orientation of SO4 tetrahedra results in fast ionic conductivity. In addition to the proton conduction, the possibility of a Na+ contribution to the conductivity in the high temperature phase is proposed. The frequency dependence of AC conductivity is proportional to ωs. The value of the exponent, s, lies between 0.85 and 0.46 in the room temperature phase, whereas it remains almost constant, 0.6, in the high-temperature phase. The dielectric dispersion is examined using the modulus formalism. An Arrhenius-type behavior is observed when the crystal undergoes the structural phase transition.  相似文献   

19.
The variations with temperature of the line-shape, spin-lattice relaxation time, T1, and spin-spin relaxation time, T2, of the 1H nuclei in NH4HSeO4 single crystals were investigated, and with these 1H NMR results we were able to distinguish the crystals’ “ammonium” and “hydrogen-bond” protons. The line width of the signal due to the ammonium protons abruptly narrows near the temperature of the superionic phase transition, TSI, which indicates that they play an important role in this phase transition. The 1H T1 for NH4+ and HSeO4 in NH4HSeO4 do not change significantly near the ferroelectric phase transition of TC1 (=250 K) and the incommensurate phase transition of Ti (=261 K), whereas they change near the temperature of the superionic phase transition TSI (=400 K). Our results indicate that the main contribution to the low-temperature phase transition below TSI is that of the molecular motion of ammonium and hydrogen-bond protons, and the main contribution to the conductivity at high temperatures above TSI is the breaking of the O-H?O bonds and the formation of new H- bonds in HSeO4. In addition, we compare these results with those for the NH4HSO4 and (NH4)3H(SO4)2 single crystals, which have similar hydrogen-bonded structure.  相似文献   

20.
We used optical birefringence, X-ray and neutron diffraction methods with single crystals to study the structural phase transitions of the perowskite-type layer structures of (CH3NH3)2MeCl4 with Me=Mn, Fe. The Mn-compound shows the following structural transitions at 394 K — a continuous order-disorder phase transition from tetragonal symmetry I4mmm to orthorhombic space group Abma (Cmca in reference 10); at 257 K — a discontinuous transition to a second tetragonal modification; at 95 K — a discontinuous transition to a monoclinic phase. For the Fe-compound the corresponding transition temperatures are 328 K and 231 K, respectively. A low temperature monoclinic phase could not be observed. The lattice parameters of the different modifications were determined as a function of temperature. The temperature dependent course of the order parameter has been investigated for the order—disorder transition. For both compounds, all the methods used gave the same value for the critical exponent of β = 0.315.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号