首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
张海燕  曹亚萍  孙修立  陈先华  于建波 《中国物理 B》2010,19(11):115201-115201
This paper investigates the Lamb wave imaging method combining time reversal for health monitoring of a metal-lic plate structure.The temporal focusing effect of the time reversal Lamb waves is investigated theoretically.It demonstrates that the focusing effect is related to the frequency dependency of the time reversal operation.Numerical simulations are conducted to study the time reversal behaviour of Lamb wave modes under broadband and narrowband excitations.The results show that the reconstructed time reversed wave exhibits close similarity to the reversed nar-rowband tone burst signal validating the theoretical model.To enhance the similarity,the cycle number of the excited signal should be increased.Experiments combining finite element model are then conducted to study the imaging method in the presence of damage like hole in the plate structure.In this work,the time reversal technique is used for the recompression of Lamb wave signals.Damage imaging results with time reversal using broadband and narrowband excitations are compared to those without time reversal.It suggests that the narrowband excitation combined time reversal can locate and determine the size of structural damage more precisely,but the cycle number of the excited signal should be chosen reasonably.  相似文献   

3.
The scattering of atoms and elementary excitations at the free surface of superfluid4He is studied in the framework of linearized time dependent mean field theory. The probability associated with the evaporation and reflection processes involving phonons, rotons and free atoms is evaluated. The analysis is carried out for different incidence angles. The consistency of the results with general properties of the scattering matrix, such as unitarity and time reversal, is discussed.  相似文献   

4.
We introduce an exactly solvable SU(2)-invariant spin-1/2 model with exotic spin excitations. With time reversal symmetry (TRS), the ground state is a spin liquid with gapless or gapped spin-1 but fermionic excitations. When TRS is broken, the resulting spin liquid exhibits deconfined vortex excitations which carry spin-1/2 and obey non-Abelian statistics. We show that this SU(2) invariant non-Abelian spin liquid exhibits the spin quantum Hall effect with quantized spin Hall conductivity σ(xy)(s)=?/2π, and that the spin response is effectively described by the SO(3) level-1 Chern-Simons theory at low energy. We further propose that a SU(2) level-2 Chern-Simons theory is the effective field theory describing the topological structure of the non-Abelian SU(2) invariant spin liquid.  相似文献   

5.
Using thin film pillars approximately 100 nm in diameter, containing two Co layers of different thicknesses separated by a Cu spacer, we examine the process by which the scattering from the ferromagnetic layers of spin-polarized currents flowing perpendicular to the layers causes controlled reversal of the moment direction in the thin Co layer. The well-defined geometry permits a quantitative analysis of this spin-transfer effect, allowing tests of competing theories for the mechanism and also new insight concerning magnetic damping. When large magnetic fields are applied, the spin-polarized current no longer fully reverses the magnetic moment, but instead stimulates spin-wave excitations.  相似文献   

6.
ABSTRACT

The time reversal invariance of classical dynamics is reconsidered in this paper with specific focus on its consequences for time correlation functions and associated properties such as transport coefficients. We show that, under fairly common assumptions on the interparticle potential, an isolated Hamiltonian system obeys more than one time reversal symmetry and that this entails non trivial consequences. Under an isotropic and homogeneous potential, in particular, eight valid time reversal operations exist. The presence of external fields that reduce the symmetry of space decreases this number, but does not necessarily impair all time reversal symmetries. Thus, analytic predictions of symmetry properties of time correlation functions and, in some cases, even of their null value are still possible. The noteworthy case of a constant external magnetic field, usually assumed to destroy time reversal symmetry, is considered in some detail. We show that, in this case too, some of the new time reversal operations hold, and that this makes it possible to derive relevant properties of correlation functions without the uninteresting inversion of the direction of the magnetic field commonly enforced in the literature.  相似文献   

7.
The statistical properties of wave propagation in classical chaotic systems are of fundamental interest in physics and are the basis for diagnostic tools in materials science. The statistical properties depend in particular also on the presence of time reversal invariance in the system, which can be verified independently by time reversal reconstruction experiments. As a model system to test the combination of statistical properties with the ability to perform time reversal reconstruction we investigated chaotic systems with time reversal invariance using ultrasonic waves in aluminum cavities. After excitation of the samples with a short acoustic pulse the reverberation responses were recorded and analyzed. In the analysis of the spectral density of the recorded responses we explicitly included the fact that not all resonances are detected. Reversibility of the excited wave dynamics in the cavity after a time delay was studied by reconstruction of the excitation pulse in time reversal experiments. The statistical properties of resonance frequencies in the cavities were obtained from the reverberant responses. The distribution of the transmission intensities displays random division of intensity between cavity waves in narrow frequency bands. The distribution of frequency spacing between neighboring cavity resonances and the spectral rigidity agree with the predictions for the Gaussian Orthogonal Ensemble. This agreement is achieved if a fraction of typically 25 percent of resonances is not detected in the experiment. The normalized amplitude of the pulse that is reconstructed in the time reversal experiments decays exponentially with the time delay between the original excitation pulse and the end of the reversed oscillation track. The exponential behavior exists for time delays longer than the inverse of the nearest neighbor resonance spacing.  相似文献   

8.
Human tooth imaging sonography is investigated experimentally with an acousto-optic noncoupling set-up based on the chirp-coded nonlinear time reversal acoustic concept. The complexity of the tooth internal structure (enamel-dentine interface, cracks between internal tubules) is analyzed by adapting the nonlinear elastic wave spectroscopy (NEWS) with the objective of the tomography of damage. Optimization of excitations using intrinsic symmetries, such as time reversal (TR) invariance, reciprocity, correlation properties are then proposed and implemented experimentally. The proposed medical application of this TR-NEWS approach is implemented on a third molar human tooth and constitutes an alternative of noncoupling echodentography techniques. A 10 MHz bandwidth ultrasonic instrumentation has been developed including a laser vibrometer and a 20 MHz contact piezoelectric transducer. The calibrated chirp-coded TR-NEWS imaging of the tooth is obtained using symmetrized excitations, pre- and post-signal processing, and the highly sensitive 14 bit resolution TR-NEWS instrumentation previously calibrated. Nonlinear signature coming from the symmetry properties is observed experimentally in the tooth using this bi-modal TR-NEWS imaging after and before the focusing induced by the time-compression process. The TR-NEWS polar B-scan of the tooth is described and suggested as a potential application for modern echodentography. It constitues the basis of the self-consistent harmonic imaging sonography for monitoring cracks propagation in the dentine, responsible of human tooth structural health.  相似文献   

9.
The magnetization reversal of the ferromagnetic (FM) layer in CoFe/PtMn exchange-coupled bilayer films has been investigated using bulk magnetometry. These films exhibit very complex angular dependence and the easy axis is perpendicular to the field applied during deposition and post-annealing. Holding the film at negative saturation of the FM layer for up to 17 h results in no change in the exchange field. We believe that this is a thermally stable exchange-coupled system. Only limited thermal activation with a small time constant appears and no thermally activated reversal of the antiferromagnetic layer with a large time constant exits.  相似文献   

10.
We find unexpected low energy excitations of fully spin-polarized composite-fermion ferromagnets in the fractional quantum Hall liquid, resulting from a complex interplay between a topological order manifesting through new energy levels and a magnetic order due to spin polarization. The lowest energy modes, which involve spin reversal, are remarkable in displaying unconventional negative dispersion at small momenta followed by a deep roton minimum at larger momenta. This behavior results from a nontrivial mixing of spin-wave and spin-flip modes creating a spin-flip excitonic state of composite-fermion particle-hole pairs. The striking properties of spin-flip excitons imply highly tunable mode couplings that enable fine control of topological states of itinerant two-dimensional ferromagnets.  相似文献   

11.
We have investigated the in-plane magnetization reversal in FeSm thin films and discovered that it can be controlled through an induced anisotropy. For films with an induced easy direction, reversal is ultra fast and can be characterized approximately using the Fatuzzo model. In films with no pronounced induced easy axis, the reversal is much slower and can be described using a logarithmic model. We have also investigated the short time (1–50 s) dependence of the remanent coercivity and fitted to logarithmic equations. For films with no pronounced easy axis, the time dependence of the coercivity correlates with the film thickness, indicating that the switching volume scales with thickness. For films with an induced easy direction, the time dependence of the coercivity is essentially constant, independent of film thickness, indicating no scalable switching volume.  相似文献   

12.
We established a large class of exactly soluble spin liquids and chiral spin liquids on three-dimensional helix lattices by introducing Kitaev-type's spin coupling. In the chiral spin liquids, exact stable ground states with spontaneous breaking of the time reversal symmetry are found. The fractionalized loop excitations in both the spin and chiral spin liquids obey non-Abelian statistics. We characterize this kind of statistics by non-Abelian Berry phase and quantum algebra relation. The topological correlation of loops is independent of local order parameter and it measures the intrinsic global quantum entanglement of degenerate ground states.  相似文献   

13.
We discuss a multistep variational approach to collective excitations. The approach is developed in a boson formalism (bosons representing particle-hole excitations) and based on an iterative sequence of diagonalizations in subspaces of the full boson space. The purpose of these diagonalizations is that of searchingf or the best approximation of the ground state of the system. The procedure also leads us to define a set of excited states and, at the same time, of operators which generate these states as a result of their action on the ground state. We examine the cases in which these operators carry one-particle-one-hole and up to two-particle-two-hole excitations. We also explore the possibility of associating bosons to Tamm-Dancoff excitations and of describing the spectrum in terms of only a selected group of these. Tests within an exactly solvable three-level model are provided.  相似文献   

14.
Modulation instability of nonlinear electromagnetic excitations (oscillating with the Josephson frequency) of finite amplitude is investigated in a Josephson junction in a film of a nonmagnetic, as well as of a magnetic (two-or three-dimensional), superconductor. The instability is accompanied by a nonlinear shift in frequency. Dispersion relations are derived for the time increment of small perturbations of the amplitude. It is shown that, for this type of excitations in a Josephson junction in a thin film of nonmagnetic superconductor, modulation instability develops only in a certain finite range of wave vectors, whereas in a thin film of a two-or three-dimensional magnetic superconductor it develops for any wave vector.  相似文献   

15.
We establish the existence of a chiral spin liquid (CSL) as the exact ground state of the Kitaev model on a decorated honeycomb lattice, which is obtained by replacing each site in the familiar honeycomb lattice with a triangle. This CSL state spontaneously breaks time reversal symmetry but preserves other symmetries. There are two topologically distinct CSL's separated by a quantum critical point. Interestingly, vortex excitations in the topologically nontrivial (Chern number +/-1) CSL obey non-Abelian statistics.  相似文献   

16.
We numerically extract large-scale excitations above the ground state in the 3-dimensional Edwards-Anderson spin glass with Gaussian couplings. We find that associated energies are O(1), in agreement with the mean field picture. Of further interest are the position-space properties of these excitations. First, our study of their topological properties show that the majority of the large-scale excitations are sponge-like. Second, when probing their geometrical properties, we find that the excitations coarsen when the system size is increased. We conclude that either finite size effects are very large even when the spin overlap q is close to zero, or the mean field picture of homogeneous excitations has to be modified. Received 14 August 2000  相似文献   

17.
Using the Landau–Khalatnikov equation of motion, the polarization reversal behavior in an asymmetric ferroelectric thin film has been studied. Our model first introduces a third power of polarization to describe the asymmetry of a ferroelectric thin film with surface transition layer, which originates from the difference between the surfaces. Interestingly, vertical drift of polarization switching behaviors was found in this system. The properties consisting of hysteresis loop, spontaneous polarization, switching current of an asymmetric ferroelectric thin film with surface transition layer are discussed.  相似文献   

18.
We discuss a multistep variational approach to collective excitations. The approach is developed in a boson formalism (bosons representing particle-hole excitations) and based on an iterative sequence of diagonalizations in subspaces of the full boson space. Purpose of these diagonalizations is that of searching for the best approximation of the ground state of the system. The procedure also leads us to define a set of excited states and, at the same time, of operators which generate these states as a result of their action on the ground state. We examine the cases in which these operators carry one-particle one-hole and up to two-particle two-hole excitations. We also explore the possibility of associating bosons to Tamm-Dancoff excitations and of describing the spectrum in terms of only a selected group of these. Tests within an exactly solvable three-level model are provided.  相似文献   

19.
The time-resolved magneto-optical Kerr spectroscopy technique is used to study the ultrafast magnetization dynamics induced by femtosecond laser pulses in GdFeCo amorphous film. We study concretely the influence of the different pump fluence and the different external magnetic field on magnetization dynamics of ultrafast demagnetization, magnetization reversal and magnetization recovery. The pump fluence dependence magnetization dynamics shows that the degree of demagnetization, the degree of magnetization reversal and the time of magnetization recovery increase with pump fluence, which can be interpreted by the “three-temperature” model. The external magnetic field dependence magnetization dynamics shows that the rate of magnetization reversal increases with the external field, which accord with the magnetization reversal mechanism based on the reversed magnetic domain nucleation and domain-wall motion.  相似文献   

20.
We study the influence of anharmonic mechanical excitations of a classical ionic lattice on its electric properties. First, to illustrate salient features, we investigate a simple model, an one‐dimensional (1D) system consisting of ten semiclassical electrons embedded in a lattice or a ring with ten ions interacting with exponentially repulsive interactions. The lattice is embedded in a thermal bath. The behavior of the velocity autocorrelation function and the dynamic structure factor of the system are analyzed. We show that in this model the nonlinear excitations lead to long lasting time correlations and, correspondingly, to an increase of the conductivity in a narrow temperature region, where the excitations are supersonic soliton‐like. In the second part we consider the quantum statistics of general ion‐electron systems with arbitrary dimension and express ‐ following linear response transport theory ‐ the quantum‐mechanical conductivity by means of equilibrium time correlation functions. Within the relaxation time approach an expression for the effective collision frequency is derived in Born approximation, which takes into account quantum effects and dynamic effects of the ion motion through the dynamic structure factor of the lattice and the quantum dynamics of the electrons. An evaluation of the influenec of solitons predicts for 1D‐lattices a conductivity increase in the temperature region where most thermal solitons are excited, similar as shown in the classical Drude‐Lorentz‐Kubo framework. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号