首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 264 毫秒
1.
We use the extended Thomas-Fermi approximation and Skyrme-type interactions to describe the energy density of a semi-infinite slab of neutron-rich nuclear matter at zero temperature. We allow for the existence of a drip phase at low proton fractions in addition to the more dense nuclear phase. We determine various bulk properties of both phases when the system is in equilibrium. We extend the usual definition of the surface energy to apply to the case where drip is present. Assuming the density profile has the form of a Fermi function to a power, we perform a constrained variational calculation to determine the parameters of the density profile. The surface and curvature energies are calculated for proton fractions ranging from 0.5 (symmetric nuclear matter) to 0 (pure neutron matter) for typical Skyrme-type interactions. We find significantly different asymmetry dependences for different interactions. For proton fractions close to 0.5, our results are in close agreement with the predictions of the droplet model. We also present results of calculations for fission barrier properties and phase transitions between nuclei and bubbles to highlight the role of surface and curvature energies in the neutron-rich regime.  相似文献   

2.
We introduce a new method for studying the thermodynamic limit for systems of particles with Coulomb interactions. The method is based on calculating the potential energy of the Coulomb interactions from the electric or magnetic fields in the system rather than from the energy of the individual particle — particle interactions. We are able to include the effects of a constant external field being imposed at the boundary of the system. The difficulties associated with Coulomb potentials being not even weakly tempered are overcome by imposing the boundary condition that at the boundary of the region containing the particles, the electric or magnetic field has normal component equal to that of the applied field. We prove that the thermodynamic free energy density exists and is independent of the sequence of regions used to define the limit. We introduce sequences of regions all of the same shape and show that for these sequences of regions the thermodynamic free energy density is independent of shape. Finally, we prove that the thermodynamic free energy is a convex function of the density of particles and of the applied field.  相似文献   

3.
For systems with finite phase space volume, the density of states can be viewed as a multiple of the probability density of the energy, when the phase space variables are independent uniformly distributed random variables. We show that the distribution of a random variable proportional to the sum of pairwise interactions of independent identically distributed random variables converges to a limiting distribution as the number of variables goes to infinity, when the interaction satisfies certain homogeneity requirements. The moments of this distribution are simple combinations of cyclic integrals of the potential function. The existence of this limit gives information about the structure function of some systems in statistical mechanics having pair-summable interactions, even in the absence of a thermodynamic limit. The result is applied to several examples, including systems of two-dimensional point vortices.  相似文献   

4.
The orientation induced by a Langmuir-Blodgett film on a Nematic Liquid Crystal (NLC) is theoretically analyzed. We show that the effective surface energy is due to different contributions connected with steric and van der Waals interactions between the nematic and the solid substrate. The analysis shows that the Langmuir-Blodgett film orientation depends on the surface density of the molecules. The initial homeotropic orientation may become unstable giving rise to a tilted film. The average orientation of the nematic molecules is also analyzed. We show that, in the event in which the steric interaction Nematic-Langmuir-Blodgett film is very large with respect to the dispersion interaction Nematic-Substrate, the nematic orientation coincides with the one of the film. On the contrary, when the two interactions are comparable, the orientation of the two media may differ. In particular, we analyze how the stable orientation depends on the surface molecular density of the film.  相似文献   

5.
We study the multi-fragmentation for the different parameterizations of the density dependent symmetry energy using an isospin-dependent quantum molecular dynamics (IQMD) model. We analyze the sensitivity of fragment production towards various forms of the density dependent symmetry energy. The inclusion of momentum dependent interactions (MDI) results in a larger variation of fragment production. We here highlighted the collective response of the MDI and symmetry energy towards the fragmentation of colliding nuclei at intermediate energies.  相似文献   

6.
In this work, we study the stability of excitons at high density, i.e. we calculate the reduction of the exciton binding energy due to exciton-exciton interactions in a high-density exciton gas. We derive first the effective electron-hole interaction in the presence of free carriers and excitons. We use the static approximation. The exciton binding energy is calculated by the variational technique. The computations are specialized to GaAs. We investigate the critical density when the exciton binding disappears, which corresponds to the exciton plasma transition. We conclude that this transition occurs at higher density than the reverse plasma exciton transition, determined by the standard criteria a0qD =1.19 [Rogers F. J., Graboske H. C., Jr. and Harword D. J., Phys. Rev.A1, 1577 (1970)].  相似文献   

7.
A relation between a class of stationary points of the energy landscape of continuous spin models on a lattice and the configurations of an Ising model defined on the same lattice suggests an approximate expression for the microcanonical density of states. Based on this approximation we conjecture that if a O(n) model with ferromagnetic interactions on a lattice has a phase transition, its critical energy density is equal to that of the n=1 case, i.e., an Ising system with the same interactions. The conjecture holds true in the case of long-range interactions. For nearest-neighbor interactions, numerical results are consistent with the conjecture for n=2 and n=3 in three dimensions. For n=2 in two dimensions (XY model) the conjecture yields a prediction for the critical energy of the Bere?inskij-Kosterlitz-Thouless transition, which would be equal to that of the two-dimensional Ising model. We discuss available numerical data in this respect.  相似文献   

8.
The high energy photoproduction of jets is being observed at theep collider, HERA. It may be that the HERA centre-of-mass energy is sufficiently large that the production of more than one pair of jets perep collision becomes possible, owing to the large number density of the probed gluons. We construct a Monte Carlo model of such multiparton interactions and study their effects on a wide range of physical observables. The conclusion is that multiple interactions could have very significant effects upon the photoproduction final state and that this would for example make extractions of the gluon density in the photon rather difficult. Total rates for the production of many (i.e.≥3) jets could provide direct evidence for the presence of multiple interactions, although parton showering and hadronization significantly affect low transverse energy jets.  相似文献   

9.
We present a few estimates of energy densities reached in heavy-ion collisions at the CERN SPS. The estimates are based on data and models of proton-nucleus and nucleus-nucleus interactions. In all of these estimates the maximum energy density in central Pb+Pb interactions is larger than the critical energy density GeV/fm3 following from lattice gauge theory computations. In estimates which we consider as realistic the maximum energy density is about . In this way our analysis gives some support to claims that deconfined matter has been produced at the CERN SPS. Any definite statement requires a deeper understanding of formation times of partons and hadrons in nuclear collisions. We also compare our results with implicit energy estimates contained in earlier models of anomalous suppression in nuclear collisions. Received: 3 February 2003 / Revised version: 5 March 2003 / Published online: 5 May 2003  相似文献   

10.
We study the Casimir problem for a fermion coupled to a static background field in one space dimension. We examine the relationship between interactions and boundary conditions for the Dirac field. In the limit that the background becomes concentrated at a point (a “Dirac spike”) and couples strongly, it implements a confining boundary condition. We compute the Casimir energy for a masslike background and show that it is finite for a stepwise continuous background field. However the total Casimir energy diverges for the Dirac spike. The divergence cannot be removed by standard renormalization methods. We compute the Casimir energy density of configurations where the background field consists of one or two sharp spikes and show that the energy density is finite except at the spikes. Finally we define and compute an interaction energy density and the force between two Dirac spikes as a function of the strength and separation of the spikes.  相似文献   

11.
A real-time and real-space time-dependent density-functional theory (TDDFT) is applied to simulate the nonlinear electron–photon interactions during femtosecond laser processing of diamond when tunnel ionization dominates. The transient localized electron dynamics including the electron excitation, energy absorption and electron density evolution are described in this Letter. In addition, the relationships among average absorbed energy, Keldysh parameter and laser intensity are revealed when the laser frequency is fixed.  相似文献   

12.
We present results of the band structure and density of states for the chalcopyrite compounds CuAlX2 (X=S,Se,Te) using the state-of-the-art full potential linear augmented plane wave (FP-LAPW) method. Our calculations show that these compounds are direct band gap semiconductors. The energy gap decreases when S is replaced by Se and Se replaced by Te in agreement with the experimental data. The values of our calculated energy gaps are closer to the experimental data than the previous calculations. The electronic structure of the upper valence band is dominated by the Cu-d and X-p interactions. The existence of Cu-d states in the upper valence band has significant effect on the optical band gap.  相似文献   

13.
It is well known that the ground state energy of many-particle Hamiltonians involving only 2-body interactions can be obtained using constrained optimizations over density matrices which arise from reducing an N-particle state. While determining which 2-particle density matrices are "N-representable" is a computationally hard problem, all known extreme N-representable 2-particle reduced density matrices arise from a unique N-particle preimage, satisfying a conjecture established in 1972. We present explicit counterexamples to this conjecture through giving Hamiltonians with 2-body interactions which have degenerate ground states that cannot be distinguished by any 2-body operator. We relate the existence of such counterexamples to quantum error correction codes and topologically ordered spin systems.  相似文献   

14.
《Physics letters. [Part B]》1987,195(2):235-239
In a Skyrme model for strong interactions we have obtained numerically the baryon number-two field configuration of minimum energy. We find that this static solution of the equations of motion has an axial symmetry. Its binding energy is 70 MeV with respect to the sum of the energy of two skyrmions with baryon number one. The baryon density of this solution has the shape of a donut (i.e., homotopic to a torus).  相似文献   

15.
We consider a model of fermions interacting via point interactions, defined via a certain weighted Dirichlet form. While for two particles the interaction corresponds to infinite scattering length, the presence of further particles effectively decreases the interaction strength. We show that the model becomes trivial in the thermodynamic limit, in the sense that the free energy density at any given particle density and temperature agrees with the corresponding expression for non-interacting particles.  相似文献   

16.
Using ensembles of two, three, and four spheres immersed in a fermionic background we evaluate the (integrated) density of states and the Casimir energy. We thus infer that for sufficiently smooth objects, whose various geometric characteristic lengths are larger then the Fermi wave length one can use the simplest semiclassical approximation (the contribution due shortest periodic orbits only) to evaluate the Casimir energy. We also show that the Casimir energy for several objects can be represented fairly accurately as a sum of pairwise Casimir interactions between pairs of objects.  相似文献   

17.
We review the calculation of the equation of state of pure neutron matter using quantum Monte Carlo (QMC) methods. QMC algorithms permit the study of many-body nuclear systems using realistic two- and three-body forces in a non-perturbative framework. We present the results for the equation of state of neutron matter, and focus on the role of three-neutron forces at supranuclear density. We discuss the correlation between the symmetry energy, the neutron star radius and the symmetry energy. We also combine QMC and theoretical models of the three-nucleon interactions, and recent neutron star observations to constrain the value of the symmetry energy and its density dependence.  相似文献   

18.
We analyze a model of cold axion dark matter weakly coupled with a dark gluon condensate,reproducing dark energy.We first review how to recover the dark energy behavior using the functional renormalization group approach,and ground our study in the properties of the effective Lagrangian,to be determined non-perturbatively.Then,within the context of G_(SM)×SU(2)_D×U(1)_(P Q),we consider Yang-Mills condensate(YMC)interactions with QCD axions.We predict a transfer of dark energy density into dark matter density,that can be tested in the next generation of experiments dedicated to dark energy measurements.We obtain new bounds on the interactions between the Yang-Mills condensate and axion dark matter from Planck data:the new physics interaction scale related to the axion/gluon condensate mixing is constrained to be higher than the 10~6GeV energy scale.  相似文献   

19.
We study the bipartite entanglement of strongly correlated systems using exact diagonalization techniques. In particular, we examine how the entanglement changes in the presence of long-range interactions by studying the Pariser-Parr-Pople model with long-range interactions. We compare the results for this model with those obtained for the Hubbard and Heisenberg models with short-range interactions. This study helps us to understand why the density matrix renormalization group (DMRG) technique is so successful even in the presence of long-range interactions. To better understand the behavior of long-range interactions and why the DMRG works well with it, we study the entanglement spectrum of the ground state and a few excited states of finite chains. We also investigate if the symmetry properties of a state vector have any significance in relation to its entanglement. Finally, we make an interesting observation on the entanglement profiles of different states (across the energy spectrum) in comparison with the corresponding profile of the density of states. We use isotropic chains and a molecule with non-Abelian symmetry for these numerical investigations.  相似文献   

20.
亚皮秒脉冲激光辐照硅薄膜热效应的模拟研究   总被引:1,自引:1,他引:0  
石颖  郑楠  梁田  徐攀  丁征  齐文宗 《光子学报》2008,37(1):6-10
基于Boltzmann方程,采用了Chen J K等人建立的自相关模型,考虑了Si薄膜的热容、热导率、弛豫时间等热力学参量随温度非线性变化的影响.采用有限差分法,数值求解了脉宽为500 fs的激光脉冲辐照2 μm厚硅膜的自相关模型.分析了膜表面载流子浓度、载流子温度、晶格温度等随入射激光功率和脉宽等的变化规律.结果表明:在脉冲辐照初期(t<0.68 ps),载流子和晶格之间存在着明显的非热平衡性,之后通过相互之间的弛豫碰撞,逐渐达到热平衡,载流子热容是引起载流子温度在早期迅速上升的原因;载流子温度速率方程中单光子吸收、载流子-晶格能量交换和载流子能流变化率对载流子温升影响较大,而多光子吸收、双极能流和带隙能量变化率对载流子温升的影响较小,可以忽略;较高脉冲激光能量(Ф>0.02 J·cm-2)辐照Si膜,会引起载流子密度方程中的俄歇复合项增大,从而使载流子密度下降率增大,导致载流子温度出现双峰.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号