首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
The adsorption of CO on Au(3 1 0) and Au(3 2 1) was studied using a combination of thermal desorption spectroscopy and high resolution core level photoemission spectroscopy. These vicinal Au surfaces both have 6-fold coordinated atoms at the step edges but have a different terrace structure. The CO adsorption behavior was found to be very similar for both surfaces. Three different desorption peaks due to chemisorbed CO were identified, which desorb around 100 K(α), 120 K(β) and 180 K(γ), respectively. The C1s and O1s spectra of the chemisorbed CO show a complex shake-up structure. Our experimental results indicate that CO only adsorbs on the step atoms. The different desorption peaks are explained by substrate-mediated long-range interactions between the adsorbates. Comparison with literature results shows that the CO adsorption energy is not only dependent on the coordination number of the Au atoms, but that the exact geometrical structure of the surface also plays a role.  相似文献   

2.
The adsorption of oxygen on the Pt(S)-[12(111) × (111) surface has been studied by Auger electron spectroscopy, low energy electron diffraction and thermal desorption spectroscopy. Two types of adsorbed oxygen have been identified by thermal desorption spectroscopy and low energy electron diffraction: (a) atoms adsorbed on step sites; (b) atoms adsorbed on terrace sites. The kinetics of adsorption into these two states can be modeled by considering sequential filling of the two adsorbed atomic states from a mobile adsorbed molecular precursor state. Adsorption on the step sites occurs more rapidly than adsorption onto the terraces. The sticking coefficient for oxygen adsorption is initially 0.4 on the step sites and drops when the step sites are saturated. The heat of desorption from the step site (45 ± 4 kcal/mole) is about 15% larger than the heat of desorption from the terraces.  相似文献   

3.
The analysis of charge state distributions after the interaction of fast Li- and N-ions with a surface at grazing incidence at energies between 50 and 350 keV yields for Li a strongly suppressed and for N an enhanced fraction of neutrals in comparison to the beam-foil interaction. These findings are supported by corresponding alkali-spectra which are dominated by lines from transitions in singly ionized atoms. The experiments are consistently interpreted in terms of a two step model: (1) collisional excitation in the close vicinity of the surface and (2) modification of this population by resonant electron transfer from (to) non localized states in the conduction (valence) band to (from) the ion. The model is also applied to interpret recent beam-foil experiments where preferential populations of Rydberg levels in highly ionized atoms were found.  相似文献   

4.
The interaction of Au and Cu atoms with the (0001) plane of graphite was studied by mass spectrometric measurements of desorption flux both in the presence and absence of an incident atomic beam. For these systems the condensation coefficient increases from ~0.05 at θ = 0 to unity at θ = 1; furthermore the rate of thermal desorption has a kinetic order of one-half for both systems at low coverage. These observations are consistent with a kinetic model in which two-dimensional nucleation of mobile adsorbed atoms occurs upon adsorption, while the reverse process, loss of atoms from the edges of disc nuclei, is the rate controlling step for desorption. This model implies that bonding of metal atoms to the basal plane of graphite is weak and nonlocalized, with adsorption occurring only when two-dimensional nucleation permits metal-metal bonding.  相似文献   

5.
The adsorption and desorption of O2 on a Pt(111) surface have been studied using molecular beam/surface scattering techniques, in combination with AES and LEED for surface characterization. Dissociative adsorption occurs with an initial sticking probability which decreases from 0.06 at 300 K to 0.025 at 600 K. These results indicate that adsorption occurs through a weakly-held state, which is also supported by a diffuse fraction seen in the angular distribution of scattered O2 flux. Predominately specular scattering, however, indicates that failure to stick is largely related to failure to accommodate in the molecular adsorption state. Thermal desorption results can be fit by a desorption rate constant with pre-exponential νd = 2.4 × 10?2 cm2 s?1 and activation energy ED which decreases from 51 to 42 kcal/mole?1 with increasing coverage. A forward peaking of the angular distribution of desorbing O2 flux suggests that part of the adsorbed oxygen atoms combine and are ejected from the surface without fully accomodating in the molecular adsorption state. A slight dependance of the dissociative sticking probability upon the angle of beam incidence further supports this contention.  相似文献   

6.
S. Ogawa 《Surface science》2007,601(18):3838-3842
Ultraviolet photoelectron spectroscopy was used to measure the oxygen uptake, changes in work function due to the surface dipole layer of adsorbed-oxygen atoms, Δ?SDL, and changes in band bending due to the defect-related midgap state, ΔBB, simultaneously during oxidation on Si(0 0 1) surface at room-temperature, RT, under an O2 pressure of 1.3 × 10−5 Pa. The oxygen dosage dependence of Δ?SDL revealed that dissociatively adsorbed-oxygen atoms occupy preferentially dimer backbond sites at the initial stage of Langmuir-type adsorption, which is associated with a rapid increase of ΔBB. When raising temperature to ∼600 °C, such preferential occupation of the dimer backbond sites by oxygen atoms is less significant and ΔBB becomes smaller in magnitude. The observed relation between Δ?SDL and ΔBB indicates that point defects (emitted Si atoms + vacancies) are more frequently generated by oxygen atoms diffusing to the dimer backbond sites at lower temperature in RT −600 °C.  相似文献   

7.
One-dimensional diffusion along long atomic chains of the Si(553)-Au surface is studied with scanning tunneling microscopy. Ab initio calculations reveal aligned preferential adsorption sites between Si step edge atomic chain and double Au atomic chain on each terrace. At 220 K the Pb atoms hop between shallow potential basins forming a potential groove and move parallel to the atomic chains. By combining the results of measurements with the model calculations of the Pb atoms static energy on the Si(553)-Au surface the attempt frequency ν? is determined.  相似文献   

8.
The model for angular resolved photoemission from adsorbed atoms is extended to account for the non-axial symmetry of atoms in a crystal field. In particular, circular dichroism in the angular distribution (CDAD) is theoretically investigated. A special emphasis is put on the case when incident photons are propagating along the principal axis of an atom in Cnv symmetry. The model, although mainly developed for adsorbates, may also be used as a base for emission from solid surfaces. An extension to simple bulk symmetries, like D6h for hexagonal or Oh for cubic crystals, is included. The CDAD for normal incidence does not vanish in the extended model and reflects the symmetry of the adsorption site. Scattering induced final state effects are discussed for alkali metal adsorption. A numerical calculation of the emission from the shallow 4p core level of Rb atoms adsorbed in a (√3×√3)−R30° structure on a Pt(111) surface is presented. In this case even the extended photoemission model predicts the absence of CDAD. The appearance of CDAD is only possible due to the scattering of photoelectrons from the neighbouring atoms of the solid.  相似文献   

9.
To reveal the nature of adsorption bonds between two-dimensional graphite islands and iridium (111) and (100) faces, a study has been made of the adsorption of potassium and cesium atoms on the surface of these systems, using thermal desorption and Auger electron spectroscopy, as well as surface ionization and thermionic emission techniques. The graphite islands are shown to be weakly bound to the iridium substrate by Van der Waals forces. The unsaturated valence bonds at the periphery of the graphite islands are “lowered down” on to the metal. The recess between the graphite layer and the metal is filled by adsorbing particles through defects in the graphite layer. The atoms can penetrate into the recess in two ways: at T > 1000 K directly from the flux incident on the surface, and at T < 1000 K also by migration from the graphite island surface. The adsorption capacity of this state is ~ (2?3) × 1014cm-2. Thermal destruction of the islands at T > 1900 K liberates the potassium and cesium atoms from under the graphite islands. Our study suggests that the reason for the “raised” position of the islands lies in the valence bonds of the graphite layer being saturated, the valence bonds of the metal and its crystallographic orientation being less significant. Therefore one may expect the graphite layer to be raised also above other metals as well. The filling by cesium of the recess between the graphite layer and iridium and of the adsorption phase on the graphite surface, does not change the general “graphitic” shape of the carbon Auger peak. This cesium results, however, in a pronounced splitting of the negative spike on the carbon peak (which provides information on its location relative to the graphite layer) indicating the appearance in the valence band of graphite near the Fermi level of two narrow (~ 2?3 eV) regions with an enhanced density of states originating from the presence of the alkali metal.  相似文献   

10.
Lin Tang  Xin Zhang  Quanmin Guo 《Surface science》2010,604(15-16):1310-1314
We have studied, using scanning tunneling microscopy, the adsorption of C60 molecules on a nanostructured Au(111) surface consisting of artificially created two-dimensional cavities. These cavities, one atomic layer deep, are found to be effective as molecular traps at room temperature. Gold atoms at step edges are found to respond to the adsorption of C60 molecules and gross faceting is observed for steps connected with R30° oriented C60 molecular islands. Structural models are proposed to establish the step structures related to all three types of molecular islands.  相似文献   

11.
We have studied the electronic structures of quasi-two-dimensional buckled honeycomb silicon (BHS) saturated by atomic hydrogen and fluorine by means of first-principles calculations. The graphene-like hexagonal silicon with chair configurations can be stabilized by atomic hydrogen and fluorine adsorption. Together with a magnetic ground state, large spin–orbit coupling (SOC) of BHS saturated by hydrogen on either side (Semi-H-BHS) indicated by the band splitting of σ bond at Γ point in the Brillouin zone is attributed to the intermixing between the density of states of hydrogen atoms and π bonds of unpassivated Si2 around the Fermi level. The Zeeman spin splitting is most likely caused by the internal electric field induced by asymmetric charge transfer.  相似文献   

12.
The kinetics of the hydrogen (deuterium) Sorption processes in the α-phase region of a thin electrodeposited Pd layer (thickness 3 × 10?5 cm) are reported. Measurements have been performed with a piezoelectric quartz crystal microbalance using an AT-cut crystal with a resonance frequency f0q = 5.27 MHz and a sensitivity of ~1010 digits g?1, at a constant temperature 80.3 ± 0.05 °C and different pressures. Both the absorption and the desorption of H2(D2) on Pd layers are controlled successively by a chemisorption step (second order kinetics) in the early stage of the processes and by a surface migration step (first order kinetics), in the subsequent stage of the processes. Consistent with the reported piezoelectric quartz crystal microbalance measurements, thermal desorption and electrochemical desorption studies, a mechanism is suggested which takes into account the adsorption ofH(D) atoms on two different surface states: (a) a “pre-dissolved” state which does not depend on the surface nature; (b) and adsorption state, the density of which depends upon the structure and nature of the Pd sample. The kinetic control of the entire processes (sorption and desorption) depends on the ratio of the density of sites (a) to (b).  相似文献   

13.
To elucidate the initial growth of metal on oxide surface, we studied adsorption of small nickel clusters, Nin (n = 1-5), on MgO(0 0 1) surface using first-principles method based on density-functional theory. It was found that the preferential adsorption site for an isolated Ni atom is directly above the surface oxygen atom. A strong covalent bond with partial ionic character is formed between the Ni adatom and the surface oxygen atom. Various structures were considered for the Nin isomers and 3D structures were found to be energetically more stable than 2D structures for clusters of more than two atoms. For the 2D clusters, metal-metal bonds prevail over metal-substrate bonds with increasing Ni coverage. The calculated work function and ionization energy were found to vary with Ni coverage which is attributed to the change of the surface dipole moment upon metal adsorption, while the evolution of Schottky barrier height at the initial growth stage is dominated by the adatom-induced gap states.  相似文献   

14.
Ortho-para conversion of H2 adsorbed at the step atoms of a Cu(510) surface proceeds with a short conversion time constant around 1 s as observed in electron-energy-loss measurements of rotational populations. We suggest that this rapid conversion is related to the special character of the adsorption state, which involves a short H2-Cu bond length of 1.8 A. On the flat Cu(100) surface, conversion is found to occur at active sites, most likely step atoms.  相似文献   

15.
The influence of pre-dosed oxygen on NO–C2H4 interactions on the surface of stepped Pt(3 3 2) has been investigated using Fourier transform infrared reflection–absorption spectroscopy (FTIR-RAS) and thermal desorption spectroscopy (TDS). The presence of oxygen significantly suppresses the adsorption of NO on the steps of Pt(3 3 2), leading to a very specific adsorption state for NO molecules when oxygen–NO co-adlayers are annealed to 350 K (assigned as atop NO on step edges). An oxygen-exchange reaction also takes place between these two kinds of adsorbed molecules, but there appears to be no other chemical reaction, which can result in the formation of higher-valence NOx.

C2H4 molecules which are post-dosed at 250 K to adlayers consisting of 18O and NO do not have strong interactions with either the NO or the 18O atoms. In particular, interactions which may result in the formation of new surface species that are intermediates for N2 production appear to be absent. However, C2H4 is oxidized to C18O2 by 18O atoms at higher annealing temperature. This reaction scavenges surface 18O atoms quickly, and the adsorption of NO molecules on step sites is therefore quickly restored. As a consequence, NO dissociation on steps proceeds very effectively, giving rise to N2 desorption which closely resembles that following only NO exposure on a clean Pt(3 3 2), both in peak intensity and desorption temperature. It is concluded that the presence of 18O2 in the selective catalytic reduction (SCR) of NO with C2H4 on the surface of Pt(3 3 2) does not play a role of activating reactants.  相似文献   


16.
Oxygen adsorption on the α-Mo2C(0 0 0 1) surface has been investigated with X-ray photoelectron spectroscopy and valence photoelectron spectroscopy utilizing synchrotron radiation. It is found that oxygen adsorbs dissociatively at room temperature, and the adsorbed oxygen atoms interact with both Mo and C atoms to form an oxycarbide layer. As the O-adsorbed surface is heated at ≧800 K, the C-O bonds are broken and the adsorbed oxygen atoms are bound only to Mo atoms. Valence PES study shows that the oxygen adsorption induces a peculiar state around the Fermi level, which enhances the emission intensity at the Fermi edge in PES spectra.  相似文献   

17.
Potential application of single-walled C3N nanotubes was investigated as chemical sensors for acetone molecules based on the density functional theory calculations. It was found that the pristine nanotube weakly adsorbs an acetone molecule with the adsorption energy of − 9.7 kcal/mol, and its electronic properties are not sensitive to this molecule. By replacing a C atom with a Si atom, the nanotube becomes a p-type semiconductor. The adsorption energy of the acetone molecule on the Si-doped nanotube becomes much more negative (Ead=−67.4 kcal/mol). The adsorption process leads to a sizable increase in the resistance of the Si-doped tube, thereby, it can show the presence of acetone molecule, creating an electronic signal. Also, the sensitivity of these devices can be controlled by the doping level of Si atoms. By increasing the number of dopant atoms from 1 to 4, the sensitivity is gradually increased.  相似文献   

18.
The influence of a static scanning tunneling microscope (STM) tip on the diffusion of xenon atoms adsorbed on a Cu(1 1 0) stepped surface is studied. Semi-empirical potentials for the Xe-surface interaction and a N-body energy based method for the Xe-tip contribution are used to calculate the adsorption energy of adsorbates in the STM junction. First, we analyse the variation of this energy when the adatom is placed near a step edge and for different tip positions. When the tip is situated in the neighbourhood of the step edge, the Ehrlich-Schwoebel barrier experienced by the adatom is lowered. This opens a specific diffusion channel, allowing a possible crossing of the step edge. Second, through a kinetic Monte Carlo approach coupled to the elastic scattering quantum chemistry method, the noisy tunneling current created by the random motion of diffusing atoms in the vicinity of the tip can be analyzed. We show that, by counting the number of diffusion events, we can determine effective barriers related to the most dominant processes contributing to the diffusion at a particular temperature. We also demonstrate that the interaction mode of the tip (attractive or imaging) greatly modifies the diffusion processes.  相似文献   

19.
We have performed a comparative luminescence investigation into spectral sensitization with dyes of holographic emulsions that contain AgBr microcrystals and are subjected to chemical sulfur or reducing sensitization. We show that, upon spectral sensitization of silver sulfide (Ag2S) n nanoclusters located on AgBr microcrystals, the polylayer adsorption of dyes on the surface of nanoclusters is observed, which is caused by van der Waals forces in the J-aggregated state. For silver oxide (Ag2O) m nanoclusters located on AgBr micro-crystals, the adsorption of dyes on their surface occurs only if chlorine atoms of heterocyclic residues of the dye interact with the nanocluster surface, which determines the adsorption of the dye as its chemisorption. In the remaining investigated cases, the polylayer adsorption of dyes during the spectral sensitization occurs not on the surface of nanoclusters but rather on the surface of AgBr microcrystals, initially in the J-aggregated state and then in the molecular- and H-aggregated states.  相似文献   

20.
采用第一性原理与蒙特卡罗方法研究Al2Cl6气体分子在石墨烯表面的吸附性能与光电性质,结果表明:(1)石墨烯对Al2Cl6气体分子具有较强的物理吸附作用,两个Al原子的连线与石墨烯平面近乎平行且两个Al原子处于紧靠顶位的桥位位置时最稳定;(2)温度升高不利于Al2Cl6气体分子吸附并存在阶跃式降低,气体逸度增加有利于吸附并存在阶跃式升高,Al2Cl6气体分子插入石墨/双层石墨烯/多层石墨烯宜将温度维持在AlCl3沸点附近,并增加气体的压力;(3)Al2Cl6的吸附对石墨烯的电子结构进行了调控,但没有明显改变石墨烯费米能级附近的态密度以及“赝能隙”;(4)Al2Cl6的吸附对体系光学参数的影响十分明显,静态介电常数提高近5倍,使体系屏蔽效应有较大增强,在长波波段的吸收性能、反射性能及光电导也有了明显提升.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号