首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A series of K(0.8)Fe(2-δ-x)Zn(x)Se(2) single-crystal samples with nominal compositions 0?≤?x?≤?0.05 were grown and their physical properties were measured in order to study the effect of Zn impurity. It is found that the Zn impurity (x?≤?0.02) does not affect the superconducting transition temperature T(c) significantly. Meanwhile the hump in resistivity which corresponds to the transition from the insulating to metallic phase quickly shifts towards low temperatures. The results imply that there should be a phase separation in this system and Zn impurity causes the enhancement of the insulating phase. The negligible effect of Zn impurity on T(c) suggests an s-wave pairing in the superconducting phase. Meanwhile there is a possibility that the Zn impurity may selectively enter into the insulting phase.  相似文献   

2.
Both electronic phase separation occuring at impurity frozen, and the impurity phase separation occuring at mobile impurity are investigated for the case of quasi-two-dimensional degenerate magnetic semiconductors to which HTSC's belong. The optimum geometry for the electronic phase separated state is found, and its energy is evaluated. According to these evaluations, the electronic phase separation is not forbidden for HTSC's. The impurity phase separation is calculated with the aid of the jellium model for the impurity metal generalized for the two-dimensional case. At realistic parameters both the impurity-magnetic phases arising as a result of phase separation may be high-conducting or even superconducting.  相似文献   

3.
《Physics letters. A》2020,384(27):126694
We consider the edge of a superconducting topological insulator with the impurity in the presence of the Zeeman field. We analytically prove that in the trivial phase two Andreev bound states (ABSs) arise with energies moving from the superconducting gap edges to zero forming two Majorana-like bound states, as the impurity strength varies from 0 to ±2. When the Zeeman field is locally perturbed, ABSs arise both in the trivial and topological phases, but in the topological phase ABSs with energy near the gap edges cannot transform into Majorana bound states and vice versa.  相似文献   

4.
An investigation is made of the influence of a Fermi-surface topology change under pressure and paramagnetic impurities on the superconducting transition temperature, on the order parameter and on the energy gap at zero temperature. The critical impurity concentrations are not the universal values and depend on the valence difference between the impurity atoms and the metal atoms.  相似文献   

5.
The electronic structure around an impurity in spin triplet p-wave superconductors is investigated by the Bogoliubov–de Gennes theory on a tight-binding model. We calculate the spontaneous current and the local density of states around the impurity and discuss the difference between -wave and -wave superconducting states.  相似文献   

6.
The role of anisotropy of the coupling constant in the influence of nonmagnetic impurities on the behavior of the superconducting transition temperature T c is investigated in the high-temperature superconductor (HTSC) model, where high values of T c result from an increase in the density of states near the Fermi surface. It is shown that this model is more sensitive to impurities than the BCS model; Anderson compensation does not occur in the HTSC model, even for identical distributions of the densities of states in the superconducting and impurity channels, and the impurity contributions are no longer linear with respect to the impurity concentration in the vicinity of T c. Anisotropy of the superconducting gap Δ and the possibility of its disappearance at certain points on the Fermi surface due to various types of pairing are manifested in the stability of the superconducting phase against the influence of impurities. Fiz. Tverd. Tela (St. Petersburg) 39, 1940–1942 (November 1997)  相似文献   

7.
We propose a model of electron pairing via spin fluctuations in doped insulators. The bare states for the superconducting condensate correspond to impurity bands in the original band gap of the undoped material. We obtain a complete set of equations for the superconducting state. We show that fermion pairing in impurity bands of extended states is possible, and thus so is superconductivity, if localized spin-0 bosons are produced. The latter are necessarily accompanied by localized spin-1 bosons, which are responsible for the relationship between singlet and triplet pairing channels of quasiparticles. Zh. éksp. Teor. Fiz. 114, 1765–1784 (November 1998)  相似文献   

8.
Static and dynamic properties of superconducting alloys containing resonant impurity scattering centers are considered. The formation of bound states within the energy gap is described and connected with locald-level correlations induced by superconductivity. The effect of the bound states on the exactly solubled-spin dynamics is investigated by evaluating the impurity atom's magnetic excitation spectrum. Finite impurity concentrations are treated within a self-consistent approximation scheme. For increasing impurity content the bound states merge to impurity bands which tend to suppress superconductivity. The relevance of the simple extra orbital model is discussed in connection with the interpretation of pressure-induced variations on the properties of superconductors alloyed with ambivalent rare earth ions.  相似文献   

9.
通过对粒子概率分布函数的计算,发现在高等离子体密度下边界间歇性事件的爆发频率有所增加。通过条件平均的手段,正负间歇性事件得以区分,并发现了二者在空间上的不同特征。不同密度梯度下的湍流粒子输运计算表明,间歇性事件与湍流粒子输运之间存在密切联系,间歇性事件的存在能够大大增加湍流粒子输运的大小。在高等离子体密度时,间歇性事件的强度有所增加,而与之相应地,湍流粒子输运的大小也有所增强。  相似文献   

10.
A superconductor with 4-fermion attraction, considered by Maćkowiak and Tarasewicz is modified by adding to the Hamiltonian a long-range magnetic interaction V between conduction fermions and localized distinguishable spin 1/2 magnetic impurities. V has the form of a reduced s-d interaction. An upper and lower bound to the system’s free energy density f(H, β) is derived and the two bounds are shown to coalesce in the thermodynamic limit. The resulting mean-field equations for the gap Δ and a parameter y, characterizing the impurity subsystem are solved and the solution minimizing f is found for various values of magnetic coupling constant g and impurity concentration. The phase diagrams of the system are depicted with five distinct phases: the normal phase, unperturbed superconducting phase, perturbed superconducting phase with nonzero gap in the excitation spectrum, perturbed gapless superconducting phase and impurity phase with completely suppressed superconductivity.  相似文献   

11.
本文采用蒙特卡罗杂质输运程序DIVIMP,针对先进实验超导托卡马克(EAST)的上单零位形放电,模拟研究了不同漂移情况下(无漂移、离子BíB漂移向下/上)的钨杂质产生和输运特性。结果表明,经典漂移显著影响了钨杂质自偏滤器靶板的溅射通量及其在上游区域的含量。  相似文献   

12.
Zhi Wang 《Physics letters. A》2010,374(30):3084-3091
The quasiparticle scattering interference phenomenon characterized by the peaks in the local density of states is studied within the kinetic energy driven superconducting mechanism in the presence of a single impurity. By calculation of the Fourier transformed ratio of the local density of states at opposite energy, it is shown that the quasiparticle scattering interference phenomenon can be described qualitatively by a single impurity in the kinetic energy driven homogeneous d-wave superconducting state. The amplitude of the peak increases with increasing energy at the low energy, and reaches a maximum at the intermediate energy, then diminishes to zero at the high energy. The theory also predicts that with increasing doping, the position of the peak along the nodal direction moves towards to the center of the Brillouin zone, while the position of the peak along the antinodal direction is shifted to large momentum region.  相似文献   

13.
研究了Anderson掺杂极限Δs/Δd《1的情况下,d+s波对称下的超导态。此模型包括哈密顿量中类似BSC项和自恰平均场似下的Anderson掺杂。随着掺杂中心数的增加或比率Δs/Δd的减小,可推出从低能下在费米能级附近具有双峰的态到N(0)≈(Δs/Δd)2态的转变。如果掺杂共振的能量为最小能量标度,则转变不连续。  相似文献   

14.
The upper boundary of the pseudogap state has been derived as a function of the doping within the impurity mechanism of high-T c superconductivity under the assumption that, in the region bordering the superconducting phase on the side of the doping less than the optimum level (the pseudogap region), there exist finite superconducting clusters and the boundary of the superconducting phase corresponds to the threshold of the existence of an infinite superconducting cluster. The position of this boundary is in agreement with experiment. The condition imposed on the doping level at which the giant proximity effect should be observed has been derived. It means essentially that the thickness of the nonsuperconducting layer should be small compared to the average size of the superconducting clusters.  相似文献   

15.
The ground state properties of a high spin magnetic impurity and its interaction with an electronic spin are probed via Andreev reflection. We see that through the charge and spin conductance one can effectively estimate the interaction strength, the ground state spin and magnetic moment of any high spin magnetic impurity. We show how a high spin magnetic impurity at the junction between a normal metal and superconductor can contribute to superconducting spintronics applications. Particularly, while spin conductance is absent below the gap for Ferromagnet-Insulator-Superconductor junctions we show that in the case of a Normal metal-High spin magnetic impurity-Normal Metal-Insulator-Superconductor (NMNIS) junction it is present. Further, it is seen that pure spin conduction can exist without any accompanying charge conduction in the NMNIS junction.  相似文献   

16.
It is observed that doping suppresses the long range anti-ferromagnetic order and induces superconducting phase for a suitable doping. In order to study this effect, we present a model study of the doping dependence of the tunneling conductance in high-Tc systems. The system is described by the Hamiltonian consisting of spin density wave (SDW) and s-wave type superconducting interaction in presence of varying impurity concentrations. The gap equations are calculated by using Green’s functions technique of Zubarev. The gap equations and the chemical potential are solved self-consistently. The imaginary part of the electron Green’s functions shows the quasi-particle density of states which represent the tunneling conductance observed by the scanning tunneling microscopy (STM). We investigate the effect of impurity on the gap equations as well as on the tunneling conductance. The results will be discussed based on the experimental observations.  相似文献   

17.
The two-dimensional Hubbard model exhibits superconductivity with d-wave symmetry even at half-filling in the presence of a next-nearest neighbor hopping. Using plaquette cluster dynamical mean-field theory with a continuous-time quantum Monte Carlo impurity solver, we reveal the non-Fermi liquid character of the metallic phase in proximity to the superconducting state. Specifically, the low-frequency scattering rate for momenta near (π, 0) varies nonmonotonically at low temperatures, and the dc conductivity is T linear at elevated temperatures with an upturn upon cooling. Evidence is provided that pairing fluctuations dominate the normal-conducting state even considerably above the superconducting transition temperature.  相似文献   

18.
《Physics letters. A》1988,127(5):292-296
A model in which the hole conductivity in a valence band is caused by random impurities is considered. Moreover, the spatially disordered distribution of those impurity levels leads to an interaction between holes. As a result, the superconducting coupling of holes is possible at high temperatures. The relation between our results and experiments in ceramics is discussed.  相似文献   

19.
The Knight shift in metallic vanadium in the normal and superconducting states has been measured. In contrast to the previously obtained results, this shift appears to change after the transition to the superconducting state. The behavior of the Knight shift in the superconducting state in vanadium samples doped with iron impurities has been found to be different from that in the “pure” samples. As a possible explanation of the effect, the broadening of the peak of the density of states near the Fermi level due to the scattering of conduction electrons on the iron impurities and the earlier predicted impurity polarization shift of the NMR line are discussed.  相似文献   

20.
We consider a model of an Anderson impurity embedded in a d(x(2)-y(2))--wave superconducting state to describe the low-energy excitations of cuprate superconductors doped with a small amount of magnetic impurities. Because of the Dirac-like energy dispersion, a sharp localized resonance above the Fermi energy, showing a marginal Fermi liquid behavior ( omega ln omega as omega-->0), is predicted for the impurity states. The same logarithmic dependence of self-energy and a linear frequency dependence of the relaxation rate are also derived for the conduction electrons, characterizing a new universality class for the strong coupling fixed point. At the resonant energies, the spatial distribution of the electron density of states around the magnetic impurity is also calculated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号