首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An ultra high vacuum-scanning electron microscope (UHV-SEM), equipped with micro-Auger electron spectroscopy, RHEED, and a deposition source has been used to study submpnolayers of Ag on Si(111), Si(100) and W(110) surfaces. A new SEM technique has been developed to visualize these submonolayers directly by applying a high negative bias (?500 V) to the sample. The dependence of the visibility on bias voltage, layer thickness and angle of incidence of the electron beam has been studied. The sensitivity was found to be better than 0.1 ML in the case of Ag on Si surfaces. Some applications to surface diffusion have been made and preliminary results for Ag on Si(111) are noted. Contrast at the 1 ML level can be > 10% in certain cases. The understanding of this contrast in terms of work function and ionization energy (band-bending) changes is discussed.  相似文献   

2.
A growth mode and interface structure analysis has been performed for Ag deposited at a high temperature of 300°C on the HF-treated Si(111):H surface by means of medium-energy ion scattering and elastic recoil detection analysis of hydrogen. The measurements show that Ag grows in the Volmer-Weber mode and that the Ag islands on the surface are epitaxial with respect to the substrate. The preferential azimuthal orientation is A-type only when Ag is deposited slowly. The interface does not reconstruct to the √3 × √3-Ag structure, which is normally observed for Ag deposition above 200°C on the Si(111)7 × 7 surface, but retain bulk-like structure. The presence of hydrogen at the interface is demonstrated after deposition of thick (1100 Å) Ag films. However, the amount of hydrogen at the interface is not a full monolayer. This partial desorption of hydrogen from the interface explains why the Schottky barrier heights of Ag/Si(111):H diodes are close to those of Ag/Si(111)7 × 7 and Ag/Si(111)2 × 1.  相似文献   

3.
We studied the low temperature (T ? 130 K) growth of Ag on Si(0 0 1) and Si(1 1 1) flat surfaces prepared by Si homo epitaxy with the aim to achieve thin metallic films. The band structure and morphology of the Ag overlayers have been investigated by means of XPS, UPS, LEED, STM and STS. Surprisingly a (√3 × √3)R30° LEED structure for Ag films has been observed after deposition of 2-6 ML Ag onto a Si(1 1 1)(√3 × √3)R30°Ag surface at low temperatures. XPS investigations showed that these films are solid, and UPS measurements indicate that they are metallic. However, after closer STM studies we found that these films consists of sharp Ag islands and (√3 × √3)R30°Ag flat terraces in between. On Si(0 0 1) the low-temperature deposition yields an epitaxial growth of Ag on clean Si(0 0 1)-2 × 1 with a twinned Ag(1 1 1) structure at coverage’s as low as 10 ML. Furthermore the conductivity of few monolayer Ag films on Si(1 0 0) surfaces has been studied as a function of temperature (40-300 K).  相似文献   

4.
The growth process of silver on a Si(111) substrate has been studied in detail by low-energy ion-scattering spectroscopy (ISS) combined with LEED-AES. Neon ions of 500 eV were used as probe ions of ISS. The ISS experiments have revealed that the growth at room temperature and at high temperature are quite different from each other even in the submonolayer coverage range. The following growth models have been proposed for the respective temperatures. At room temperature, the deposited Ag forms a two-dimensional (2D) island at around 2/3 monolayer (ML) coverage, where the Ag atoms are packed commensurately with the Si(111)1 substrate. One third of the substrate Si surface remains uncovered there. Then it starts to develop into Ag crystal, and at a few ML coverage a 3D island of bulk Ag crystal grows directly on the substrate. An intermediate layer, which covers uniformly the whole surface before the growth of Ag crystal, does not exist. At high temperatures (>~200°C), the well-known Si(111)√3-Ag layer is formed as an intermediate layer, which consists of 2/3 ML of Ag atoms and covers the whole surface uniformly. These Ag atoms are embedded in the first double layer of the Si substrate. It is concluded that the formation of the √3 structure needs relatively high activation energy which may originate from the large displacement of Si atoms owing to the embedment of the Ag atoms, and does not proceed below about 200°C. The most stable state of the Ag atoms on the outermost Si layer is in the shape of an island, both for the Si(111) surface and for the Si(111)√3-Ag surface.  相似文献   

5.
Metal filled Si nanopores, that is, metal nanorods in an Si matrix, are produced by an electroless process that consists of three steps: (1) electroless displacement deposition of metal nanoparticles from a metal salt solution containing HF; (2) Si nanopore formation by metal-particle-enhanced HF etching; and (3) metal filling in nanopores by autocatalytic electroless deposition. Ag nanoparticles produce Si nanopores whose sizes are a few tens of nm in diameter and ca. 50 nm deep. Au nanoparticles produce finer and straighter nanopores on Si than the Ag case. These nanopores are filled with a Co or a Co-Ni alloy by autocatalytic deposition using dimethylamine-borane as a reducing agent. Phosphinate can be used as a reducing agent for the Au-deposited-and-pore-formed Si. The important feature of this process is that the metal nanoparticles, that is, the initiation points of the autocatalytic metal deposition, are present on the bottoms of the Si nanopores.  相似文献   

6.
MOS (metal-oxide-semiconductor) electron emitters consisting of a Si substrate, a SiO2 tunnel barrier and a Ti (1 nm)/Au(7 nm) top-electrode, with an active area of 1 cm2 have been produced and studied with surface science techniques under UHV (ultra high vacuum) conditions and their emission characteristics have been investigated. It is known, that deposition of an alkali metal on the emitting surface lowers the work function and increases the emission efficiency. For increasing Cs coverages the surface has been characterized by X-ray Photoelectron Spectroscopy (XPS), Ion Scattering Spectroscopy (ISS) and work function measurements. Energy spectra of electron emission from the devices under an applied bias voltage have been recorded for the clean Au surface and for two Cs coverages and simultaneous work function curves have been obtained. The electron emission onset is seen to appear at the surface work function. A method for cleaning the ex situ deposited Au top electrodes to a degree satisfactory to surface science studies has been developed, and a threshold for oxide damage by low-energy ion exposure between 0.5 and 1 keV has been determined.  相似文献   

7.
Monolayers of Co were prepared by pulsed laser deposition (PLD) and thermal deposition (TD) on Si(111) substrates. The surface structure and morphology were studied as a function of annealing temperature with scanning tunneling microscopy and low-energy electron diffraction (LEED). Comparing PLD to TD in the monolayer regime, we find surface phases with lower Co content in the top layer for annealing temperatures below 500 °C, indicating an implantation of Co into the Si substrate. The implanted Co leads to an increased intermixing of Co and Si and a higher density of nucleation centers for Co multilayers produced by PLD compared to TD. Multilayer PLD films therefore show an improved film quality, which is detected by an increased intensity of the LEED reflectivity. PACS 68.37.Ef; 61.14.Hg; 68.55.-a  相似文献   

8.
The kinetics of deposition for monomolecular submonolayer films on a Si(111) surface is studied via low-energy electron diffraction with measurements of the intensities of diffraction reflection and the elastic background. The degree of structural perfection in growing films is estimated for alkali-metal silicides and silicon from low-energy beams. The optimum energy and dose intervals of silicide film formation are determined.  相似文献   

9.
Cobalt nanostructured films were successfully prepared by depositing Co clusters onto a Si(100) substrate in our home-made cluster beam deposition apparatus. During preparation, the energy of the cluster beam was accelerated by applying an external electric field. The effect of the cluster beam energy on the microstructure, phase transformation and magnetic behavior was investigated for the cluster-assembled film in the case of both low energy cluster deposition and energetic cluster deposition. The scanning electron microscopy observation confirms that the films are assembled by the regular spherical nanoclusters. Compared with the low-energy Co cluster-assembled film, the magnetization of the energetic Co cluster-assembled film was improved significantly. The present work describes an effective way to prepare the magnetic nanostructured films.  相似文献   

10.
We have studied the growth of Ag on Ge/Si(1 1 1) substrates. The Ge/Si(1 1 1) substrates were prepared by depositing one monolayer (ML) of Ge on Si(1 1 1)-(7 × 7) surfaces. Following Ge deposition the reflection high energy electron diffraction (RHEED) pattern changed to a (1 × 1) pattern. Ge as well as Ag deposition was carried out at 550 °C. Ag deposition on Ge/Si(1 1 1) substrates up to 10 ML has shown a prominent (√3 × √3)-R30° RHEED pattern along with a streak structure from Ag(1 1 1) surface. Scanning electron microscopy (SEM) shows the formation of Ag islands along with a large fraction of open area, which presumably has the Ag-induced (√3 × √3)-R30° structure on the Ge/Si(1 1 1) surface. X-ray diffraction (XRD) experiments show the presence of only (1 1 1) peak of Ag indicating epitaxial growth of Ag on Ge/Si(1 1 1) surfaces. The possibility of growing a strain-tuned (tensile to compressive) Ag(1 1 1) layer on Ge/Si(1 1 1) substrates is discussed.  相似文献   

11.
The , and 6×6 phases of Ag/Si(1 1 1) have been studied by angle-resolved photoemission and low-energy electron diffraction. The Ag/Si(1 1 1) surface has an intrinsic semiconducting character with two fully occupied, dispersing surface state bands. We find that only one of the additional surface bands on the surface is metallic in contrast to the two metallic bands discussed in the literature. On the 6×6 surface, the partially occupied surface band of the surface seems to be absent, resulting in a gap of about 0.2 eV with respect to the Fermi-level.  相似文献   

12.
利用紫外光电子能谱(UPS)对新型有机半导体三萘基膦(TNP)在金属Ag(110)表面上沉积生长及其电子性质等进行了研究.三萘基膦的价带谱峰分别位于费米能级以下38,63,93和110 eV处,其中,价带顶 (HOS)位于费米能级以下约25 eV处.清洁Ag(110)表面的功函数为43 eV.随着三萘基膦在Ag(110)表面的沉积,功函数减小到38 eV,并达到饱和.根据UPS的测量结果,给出了三萘基膦/Ag(110)界面的能带结构,且三萘基膦与衬底Ag之间呈弱相互作用行为. 关键词: 紫外光电子谱 价电子结构 功函数  相似文献   

13.
Schottky contacts were prepared by evaporation of silver on H-terminated Si(111) surfaces at room temperature. The Si(111)H-(1×1) surfaces were obtained by wet-chemical etching in buffered hydrofluoric acid. The zero-bias barrier heights and the ideality factors, which were determined fromI/V characteristics measured with these contacts, were found to be linearly correlated. This plot gives a zero-bias barrier height of 0.74 eV for an ideality factor of 1.01 which is obtained for image-force lowering of the barrier only. The barrier heights observed here equal the one found with Ag/Si(111)-(1×1) contacts. They were prepared by Ag evaporation onto clean Si(111)-(7×7) surfaces at room temperature and subsequent heat treatments. The present result is explained by the desorption of the hydrogen adatoms during the deposition of Ag and the existence of a (1×1)-structure at the Ag/Si(111) interface.  相似文献   

14.
The deposition of Ag on a hydrogenated Si(111) substrate, prepared by wet chemical treatment, was carried out at room temperature (RT), 250°C and above 350°C. The samples were examined in situ by LEED, XPS and then by SEM and TEM. Our results show that flat Ag crystallite domains are growing on the H/Si(111) surface at all three substrate temperatures. The h/w ratio of the islands increases but the density decreases with increasing substrate temperature which is attributed to the differences between hydrogenated and clean Si(111) surface. The so-called A-type and B-type domains resulting from analyses of TOF ICISS are attributed to twinning in the deposited layer.  相似文献   

15.
张超  王永亮  颜超  张庆瑜 《物理学报》2006,55(6):2882-2891
采用嵌入原子方法的原子间相互作用势,通过分子动力学方法模拟了低能Pt原子与Cu,Ag,Au,Ni,Pd替位掺杂Pt(111)表面的相互作用过程,系统研究了替位原子对表面吸附原子产额、溅射产额和空位缺陷产额的影响规律,分析了低能沉积过程中沉积原子与基体表面的相互作用机理以及替位原子的作用及其影响规律.研究结果显示:替位原子的存在不仅影响着沉积能量较低时的表面吸附原子的产额与空间分布,而且对沉积能量较高时的低能表面溅射过程和基体表面空位的形成产生重要影响.替位原子导致的表面吸附原子产额、表面原子溅射以及空位形 关键词: 分子动力学 低能粒子 替位掺杂 表面原子产额 溅射 空位  相似文献   

16.
The effect of Ag nanoislands on the Raman of graphene was investigated in this work. Compared with that on the bare silicon wafer, Raman enhancement was observed in the graphene film that covered on Ag/Si surface with nanoscale Ag islands, which would be induced by the localized plasmon resonance in Ag nanostructures. The interaction between the graphene sheet and Ag/Si substrate was further studied. The peak shift and line shape of Raman spectroscopy indicated a nonuniform strain distribution in the Ag/Si supported graphene film.  相似文献   

17.
A facile approach to manipulate the hydrophobicity of surface by controlled growth of standing Ag nanorod arrays is presented. Instead of following the complicated conventional method of the template-assisted growth, the morphology or particularly average diameter and number density (nanorods cm?2) of nanorods were controlled on bare Si substrate by simply varying the deposition rate during glancing angle deposition. The contact angle measurements showed that the evolution of Ag nanorods reduces the surface energy and makes an increment in the apparent water contact angle compared to the plain Ag thin film. The contact angle was found to increase for the Ag nanorod samples grown at lower deposition rates. Interestingly, the morphology of the nanorod arrays grown at very low deposition rate (1.2 Å?sec?1) results in a self-cleaning superhydrophobic surface of contact angle about 157° and a small roll-off angle about 5°. The observed improvement in hydrophobicity with change in the morphology of nanorod arrays is explained as the effect of reduction in solid fraction within the framework of Cassie–Baxter model. These self-cleaning Ag nanorod arrays could have a significant impact in wide range of applications such as anti-icing coatings, sensors and solar panels.  相似文献   

18.
Early stages of growth of silver thin films on oriented silicon surfaces Si(1 0 0)2 × 1 and Si(1 1 1)7 × 7 were studied directly during deposition at room temperature by the scanning tunneling microscopy. Single Ag atoms deposited on the Si(1 0 0)2 × 1 surface diffuse too fast on the surface to be imaged by the microscope. Nucleation on C-type defects of the Si(1 0 0)2 × 1 reconstruction has been observed. During further growth, the defects represent stable terminations of silver chains. Ag nanoclusters growing on the Si(1 1 1)7 × 7 surface have been studied as a system with low diffusivity at room temperature. On this surface, presence of effective interaction between Ag clusters and individual Ag atoms in neighboring cells of the reconstruction has been identified. The interaction results in lowering the barrier for Ag atom hopping to an adjacent unit cell occupied by an Ag cluster. Unique possibilities arising from scanning the surface directly during growth are demonstrated.  相似文献   

19.
Infrared absorption measurements using a multiple internal reflection geometry are reported for condensed methanol at 90 K on Ag island films deposited on the oxidized and hydrogen-terminated surfaces of Si(111). The attenuated total reflection (ATR) spectra obtained as a function of methanol exposure (up to 14 L) show that a 1-nm mass thickness of Ag island film on the oxidized Si(111) surface yields an absorption intensity 2–3 times larger than the intensity in the absence of Ag on the oxidized surface. Deposition of the same thickness of Ag on the hydrogen-terminated Si(111) surface results in approximately twice the enhancement. The different magnitudes of the enhancement are discussed based on SEM micrographs for Ag island films formed on the oxidized and H-terminated Si(111) surfaces. Received: 1 March 1999 / Accepted: 8 March 1999 / Published online: 5 May 1999  相似文献   

20.
Growth of Ag islands under ultrahigh vacuum condition on air-exposed Si(0 0 1)-(2 × 1) surfaces has been investigated by in-situ reflection high energy electron diffraction (RHEED). A thin oxide is formed on Si via exposure of the clean Si(0 0 1)-(2 × 1) surface to air. Deposition of Ag on this oxidized surface was carried out at different substrate temperatures. Deposition at room temperature leads to the growth of randomly oriented Ag islands while well-oriented Ag islands, with (0 0 1)Ag||(0 0 1)Si, [1 1 0]Ag||[1 1 0]Si, have been found to grow at substrate temperatures of ≥350 °C in spite of the presence of the oxide layer between Ag islands and Si. The RHEED patterns show similarities with the case of Ag deposition on H-passivated Si(0 0 1) surfaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号